Abstract

For electrical devices based on vanadium dioxide thin film, various methods have been implemented on the electrical gating of the devices. In this paper, a photo-assisted electrical gating in a two-terminal device is demonstrated based on vanadium dioxide thin film, instead of a three-terminal device with a gate terminal, by illuminating infrared light directly onto the film. Based on the light-induced phase transition, the threshold voltage of the device, in which an abrupt current jump take places, was theoretically anticipated to be controlled (electrically gated) by adjusting the light intensity. Finally, the prediction was experimentally verified.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, "Light-induced ultrafast phase transitions in VO2 thin film," Appl. Surf. Sci. 252, 5512-5515 (2006).
    [CrossRef]
  2. S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, "Optical switch based on vanadium dioxide thin films," Infrared Phys. Tech. 45, 239-242 (2004).
    [CrossRef]
  3. M. A. Richardson and J. A. Coath, "Infrared optical modulators for missile testing," Opt. Laser Technol. 30, 137-140 (1998).
    [CrossRef]
  4. V. Yu. Zerov, Yu. V. Kulikov, V. N. Leonov, V. G. Malyarov, I. A. Khrebtov, and I. I. Shaganov, "Features of the operation of a bolometer based on a vanadium dioxide film in a temperature interval that includes a phase transition," J. Opt. Technol. 66, 387-390 (1999).
    [CrossRef]
  5. S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, "Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation," Sens. Actuator. Phys. 115, 28-31 (2004).
    [CrossRef]
  6. F. J. Morin, "Oxides which show a metal-to-insulator transition at the neel temperature," Phys. Rev. Lett. 3, 34-36 (1959).
    [CrossRef]
  7. B.-J. Kim, Y. W. Lee, B.-G. Chae, Sun Jin Yun, S.-Y. Oh, H.-T . Kim, and Y.-S . Lim, "Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor," Appl. Phys. Lett. 90, 023515(1-3) (2007).
  8. D. B. McWhan, T. M. Rice, and J. P. Remeika, "Mott transition in Cr-doped V2O3," Phys. Rev. Lett. 23, 1384-1387 (1969).
    [CrossRef]
  9. E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, and P. Postorino, "Evidence of a pressure-induced metallization process in monoclinic VO2," Phys. Rev. Lett.  98, 196406(1-4) (2007).
    [CrossRef]
  10. A. Cavalleri, Cs. Tóth, C. W . Siders, J. A . Squier, F. Ráksi, P . Forget, and J. C. Kieffer, "Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition," Phys. Rev. Lett.  87, 237401 (1-4) (2001).
    [CrossRef]
  11. A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, "Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,"Phys. Rev. B 70, 161102 (1-4) (2004).
    [CrossRef]
  12. H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, "Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices," New J. Phys. 6, 52-70 (2004).
    [CrossRef]
  13. C.-R. Cho, S. I. Cho, S. Vadim, R. Jung, and I. Yoo, "Current-induced metal-insulator transition in VOx thin film prepared by rapid-thermal-annealing," Thin Solid Films 495, 375-379 (2006).
    [CrossRef]
  14. F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami, and Y. Noda, "An organic thyristor," Nature 437, 522-524 (2005).
    [CrossRef] [PubMed]
  15. H.-T. Kim, Y. W. Lee, B.-J. Kim, B.-G. Chae, S. J. Yun, K.-Y. Kang, K.-J. Han, K.-J. Yee, and Y.-S. Lim, "Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis," Phys. Rev. Lett. 97, 266401 (1-4) (2006).
  16. R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, "High-voltage, wavelength-discriminating, light-activated GaAs thyristor," Electron. Lett. 25, 1592-1593 (1989).
    [CrossRef]

2006 (2)

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, "Light-induced ultrafast phase transitions in VO2 thin film," Appl. Surf. Sci. 252, 5512-5515 (2006).
[CrossRef]

C.-R. Cho, S. I. Cho, S. Vadim, R. Jung, and I. Yoo, "Current-induced metal-insulator transition in VOx thin film prepared by rapid-thermal-annealing," Thin Solid Films 495, 375-379 (2006).
[CrossRef]

2005 (1)

F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami, and Y. Noda, "An organic thyristor," Nature 437, 522-524 (2005).
[CrossRef] [PubMed]

2004 (3)

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, "Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices," New J. Phys. 6, 52-70 (2004).
[CrossRef]

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, "Optical switch based on vanadium dioxide thin films," Infrared Phys. Tech. 45, 239-242 (2004).
[CrossRef]

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, "Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation," Sens. Actuator. Phys. 115, 28-31 (2004).
[CrossRef]

1999 (1)

1998 (1)

M. A. Richardson and J. A. Coath, "Infrared optical modulators for missile testing," Opt. Laser Technol. 30, 137-140 (1998).
[CrossRef]

1989 (1)

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, "High-voltage, wavelength-discriminating, light-activated GaAs thyristor," Electron. Lett. 25, 1592-1593 (1989).
[CrossRef]

1969 (1)

D. B. McWhan, T. M. Rice, and J. P. Remeika, "Mott transition in Cr-doped V2O3," Phys. Rev. Lett. 23, 1384-1387 (1969).
[CrossRef]

1959 (1)

F. J. Morin, "Oxides which show a metal-to-insulator transition at the neel temperature," Phys. Rev. Lett. 3, 34-36 (1959).
[CrossRef]

Appl. Surf. Sci. (1)

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, "Light-induced ultrafast phase transitions in VO2 thin film," Appl. Surf. Sci. 252, 5512-5515 (2006).
[CrossRef]

Electron. Lett. (1)

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, "High-voltage, wavelength-discriminating, light-activated GaAs thyristor," Electron. Lett. 25, 1592-1593 (1989).
[CrossRef]

Infrared Phys. Tech. (1)

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, "Optical switch based on vanadium dioxide thin films," Infrared Phys. Tech. 45, 239-242 (2004).
[CrossRef]

J. Opt. Technol. (1)

Nature (1)

F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami, and Y. Noda, "An organic thyristor," Nature 437, 522-524 (2005).
[CrossRef] [PubMed]

New J. Phys. (1)

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, "Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices," New J. Phys. 6, 52-70 (2004).
[CrossRef]

Optic. Laser Tech. (1)

M. A. Richardson and J. A. Coath, "Infrared optical modulators for missile testing," Opt. Laser Technol. 30, 137-140 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

F. J. Morin, "Oxides which show a metal-to-insulator transition at the neel temperature," Phys. Rev. Lett. 3, 34-36 (1959).
[CrossRef]

D. B. McWhan, T. M. Rice, and J. P. Remeika, "Mott transition in Cr-doped V2O3," Phys. Rev. Lett. 23, 1384-1387 (1969).
[CrossRef]

Sens. Actuator. Phys. (1)

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, "Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation," Sens. Actuator. Phys. 115, 28-31 (2004).
[CrossRef]

Thin Solid Films (1)

C.-R. Cho, S. I. Cho, S. Vadim, R. Jung, and I. Yoo, "Current-induced metal-insulator transition in VOx thin film prepared by rapid-thermal-annealing," Thin Solid Films 495, 375-379 (2006).
[CrossRef]

Other (5)

B.-J. Kim, Y. W. Lee, B.-G. Chae, Sun Jin Yun, S.-Y. Oh, H.-T . Kim, and Y.-S . Lim, "Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor," Appl. Phys. Lett. 90, 023515(1-3) (2007).

E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, and P. Postorino, "Evidence of a pressure-induced metallization process in monoclinic VO2," Phys. Rev. Lett.  98, 196406(1-4) (2007).
[CrossRef]

A. Cavalleri, Cs. Tóth, C. W . Siders, J. A . Squier, F. Ráksi, P . Forget, and J. C. Kieffer, "Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition," Phys. Rev. Lett.  87, 237401 (1-4) (2001).
[CrossRef]

A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, "Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,"Phys. Rev. B 70, 161102 (1-4) (2004).
[CrossRef]

H.-T. Kim, Y. W. Lee, B.-J. Kim, B.-G. Chae, S. J. Yun, K.-Y. Kang, K.-J. Han, K.-J. Yee, and Y.-S. Lim, "Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis," Phys. Rev. Lett. 97, 266401 (1-4) (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Cross-section and plane-view of the two-terminal device based on the VO2 thin film.

Fig. 2.
Fig. 2.

Schematic diagram of experimental setup used to implement the photo-assisted electrical gating in the fabricated two-terminal devices.

Fig. 3.
Fig. 3.

(a) Optical spectra of the light coming out of the optical switch, measured (b) photo-assisted electrical gating operation and (c) linearity curves of Device I, and measured (d) photo-assisted electrical gating operation and (e) linearity curves of Device II.

Fig. 4.
Fig. 4.

(a) The test electrical circuit used to investigate the gating speed in the VO2 devices and transient electrical responses of VR when the optical switch is turned (b) on and (c) off in Device I.

Metrics