Abstract

This paper reports a novel and effective method to fabricate microlens arrays on polycarbonate films by hybrid extrusion rolling embossing. The metallic cylinder mold bearing an array of micro-holes is fabricated using photolithography with dry film resist. During the extrusion rolling embossing process, the extruded PC film is immediately pressed against the surface of the roller mold. Under the influence of the rolling pressure and surface tension, an array of convex microlenses is formed. The uniformity and optical properties have been verified. An efficient continuous mass production technique has been demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast fabrication of integrated surface-relief and particle-diffusing plastic diffuser by use of a hybrid extrusion roller embossing process

Tzu-Chien Huang, Jian-Ren Ciou, Po-Hsun Huang, Kuo-Huang Hsieh, and Sen-Yeu Yang
Opt. Express 16(1) 440-447 (2008)

Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing

Po-Hsun Huang, Tzu-Chien Huang, Yi-Ting Sun, and Sen-Yeu Yang
Opt. Express 16(5) 3041-3048 (2008)

Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology

Dan Xie, Xuefeng Chang, Xiayun Shu, Yingchun Wang, Huanqi Ding, and Yangxu Liu
Opt. Express 23(4) 5154-5166 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). http://www.iop.org/EJ/toc/0957-0233/1/8
    [Crossref]
  2. X.-C. Yuan, W. X. Yu, N. Q. Ngo, and W. C. Cheong, “Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask,” Opt. Express 10, 303–308 (2002).
    [PubMed]
  3. W. X. Yu and X. -C. Yuan, “UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,” Opt. Express 11, 2253–2258 (2003).
    [Crossref] [PubMed]
  4. C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express 14, 6253–6258 (2006).
    [Crossref] [PubMed]
  5. V. Bardinal, E. Daran, T. Leïchlé, C. Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet, and F. Carcenac, “Fabrication and characterization of microlens arrays using a cantilever-based spotter,” Opt. Express 15, 6900–6907 (2007).
    [Crossref] [PubMed]
  6. W. L. Chang and P. K. Wei, “Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography,” Opt. Express 15, 6774–6783 (2007).
    [Crossref] [PubMed]
  7. S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12, 6366–6371 (2004).
    [Crossref] [PubMed]
  8. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14, 810–816 (2006).
    [Crossref] [PubMed]
  9. B.K. Lee, D.S. Kim, and T.H. Kwon, “Replication of microlens arrays by injection molding, Microsystem Technologies,”  10, 531–535 (2004).
  10. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, (2002) 365–379.
    [Crossref]
  11. S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D: Appl. Phys. 36, 2451–2456 (2003).
    [Crossref]
  12. C. Y. Chang, S.Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12754–759 (2006).
    [Crossref]

2007 (2)

2006 (3)

2004 (2)

S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12, 6366–6371 (2004).
[Crossref] [PubMed]

B.K. Lee, D.S. Kim, and T.H. Kwon, “Replication of microlens arrays by injection molding, Microsystem Technologies,”  10, 531–535 (2004).

2003 (2)

S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D: Appl. Phys. 36, 2451–2456 (2003).
[Crossref]

W. X. Yu and X. -C. Yuan, “UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,” Opt. Express 11, 2253–2258 (2003).
[Crossref] [PubMed]

2002 (2)

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Bardinal, V.

Camps, T.

Carcenac, F.

Chang, C. Y.

C. Y. Chang, S.Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12754–759 (2006).
[Crossref]

C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express 14, 6253–6258 (2006).
[Crossref] [PubMed]

Chang, S.-I.

Chang, W. L.

Cheong, W. C.

Conedera, V.

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Daran, E.

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Doucet, J. B.

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, (2002) 365–379.
[Crossref]

Guo, R.

Hsieh, K. H.

Huang, L. S.

Huang, W.

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Kang, S.

S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D: Appl. Phys. 36, 2451–2456 (2003).
[Crossref]

Kim, D.S.

B.K. Lee, D.S. Kim, and T.H. Kwon, “Replication of microlens arrays by injection molding, Microsystem Technologies,”  10, 531–535 (2004).

Kim, S.-M.

S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D: Appl. Phys. 36, 2451–2456 (2003).
[Crossref]

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, (2002) 365–379.
[Crossref]

Kwon, T.H.

B.K. Lee, D.S. Kim, and T.H. Kwon, “Replication of microlens arrays by injection molding, Microsystem Technologies,”  10, 531–535 (2004).

Lee, B.K.

B.K. Lee, D.S. Kim, and T.H. Kwon, “Replication of microlens arrays by injection molding, Microsystem Technologies,”  10, 531–535 (2004).

Leïchlé, T.

Levallois, C.

Li, J.

Ngo, N. Q.

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, (2002) 365–379.
[Crossref]

Sheh, J. L.

C. Y. Chang, S.Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12754–759 (2006).
[Crossref]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Vergnenègre, C.

Wei, P. K.

Xia, A.

Xiao, S.

Yang, S. Y.

Yang, S.Y.

C. Y. Chang, S.Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12754–759 (2006).
[Crossref]

Yoon, J.-B.

Yu, W. X.

Yuan, X. -C.

Yuan, X.-C.

Zhai, X.

J. Phys. D: Appl. Phys. (1)

S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D: Appl. Phys. 36, 2451–2456 (2003).
[Crossref]

Meas. Sci. Technol. (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Microelectron. Eng. (1)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, (2002) 365–379.
[Crossref]

Microsyst. Technol. (1)

C. Y. Chang, S.Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12754–759 (2006).
[Crossref]

Opt. Express (7)

X.-C. Yuan, W. X. Yu, N. Q. Ngo, and W. C. Cheong, “Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask,” Opt. Express 10, 303–308 (2002).
[PubMed]

W. X. Yu and X. -C. Yuan, “UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,” Opt. Express 11, 2253–2258 (2003).
[Crossref] [PubMed]

C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, “Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer,” Opt. Express 14, 6253–6258 (2006).
[Crossref] [PubMed]

V. Bardinal, E. Daran, T. Leïchlé, C. Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet, and F. Carcenac, “Fabrication and characterization of microlens arrays using a cantilever-based spotter,” Opt. Express 15, 6900–6907 (2007).
[Crossref] [PubMed]

W. L. Chang and P. K. Wei, “Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography,” Opt. Express 15, 6774–6783 (2007).
[Crossref] [PubMed]

S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12, 6366–6371 (2004).
[Crossref] [PubMed]

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14, 810–816 (2006).
[Crossref] [PubMed]

Other (1)

B.K. Lee, D.S. Kim, and T.H. Kwon, “Replication of microlens arrays by injection molding, Microsystem Technologies,”  10, 531–535 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Dry film resist (a) schematics showing the conformation (not to the scale) (b) photograph of the roll of DFR

Fig. 2.
Fig. 2.

Schematic diagrams of microstructure fabrication process on roller using dry film resist

Fig. 3.
Fig. 3.

Images of the fabricated roller mold with micro-hole arrays using (a) a digital camera (b) SEM (c) 3-D surface profiler

Fig. 4.
Fig. 4.

Schematic diagram and photograph showing the hybrid extrusion rolling embossing facility

Fig. 5.
Fig. 5.

Under proper rolling pressure, PC film is partially protruded in the holes and form the convex lens due to surface tension during rolling embossing

Fig. 6.
Fig. 6.

Fabricated microlens array on PC film (a) SEM (b) 3-D Surface profiler

Fig. 7.
Fig. 7.

microlens array focal length measurement system

Tables (1)

Tables Icon

Table 1. The diameter of the micro-holes after each step during roller fabrication process

Metrics