Abstract

Whispering-gallery modes resonances of submicron wall thickness capillaries exhibit very large wavelength shifts as a function of the refractive index of the medium that fills the inside. The sensitivity to refractive index changes is larger than in other optical microcavities as microspheres, microdisks and microrings. The outer surface where total internal reflection takes place remains always in air, enabling the measure of refractive index values higher than the refractive index of the capillary material. The fabrication of capillaries with submicron wall thickness has required the development of a specific technique. A refractometer with a response higher than 390 nm per refractive index unit is demonstrated. These sensors are readily compatible with microfluidic systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [Crossref]
  2. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
    [Crossref]
  3. A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
    [Crossref]
  4. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref] [PubMed]
  5. M. Hossein-Zadeh and K. J.Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Opt. Express 15, 166–175 (2007).
    [Crossref] [PubMed]
  6. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref] [PubMed]
  7. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
    [Crossref]
  8. S. Y. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
    [Crossref]
  9. A. Díez, M. V. Andrés, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A  16, 2978–2982 (1999).
    [Crossref]
  10. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [Crossref]
  11. A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
    [Crossref]
  12. R. C. Weast, M. J. Astle, and W. H. Beyer, ed. (CRC Press, Boca Raton 1986–1987), pp. E374–E375.
  13. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
    [Crossref] [PubMed]
  14. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, , “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.  89, 191106 (2006).
    [Crossref]
  15. I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
    [Crossref]
  16. C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 1989), Chap. 6.
  17. I. D. Chremmos, N. K. Uzunoglu, and G. Kakarantzas, “Rigorous analysis of the coupling between two nonparallel optical fibers,” J. Lightwave Technol. 24, 3779–3788 (2006).
    [Crossref]
  18. R. P. Kenny, T. A. Birks, and K. P. Oarkley, “Control of optical fibre taper shape,” Electron. Lett. 27, 1654–1656 (1991).
    [Crossref]
  19. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery mode rsonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  20. T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
    [Crossref]
  21. J. Carmon, L. Yang, and K. J.Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]

2007 (2)

M. Hossein-Zadeh and K. J.Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Opt. Express 15, 166–175 (2007).
[Crossref] [PubMed]

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

2006 (8)

I. D. Chremmos, N. K. Uzunoglu, and G. Kakarantzas, “Rigorous analysis of the coupling between two nonparallel optical fibers,” J. Lightwave Technol. 24, 3779–3788 (2006).
[Crossref]

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
[Crossref] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, , “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.  89, 191106 (2006).
[Crossref]

S. Y. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

2005 (2)

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

2004 (1)

2003 (2)

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

1999 (1)

1997 (1)

1991 (1)

R. P. Kenny, T. A. Birks, and K. P. Oarkley, “Control of optical fibre taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[Crossref]

Aldridge, J. C.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Andrés, M. V.

Anthes-Washburn, M.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Arnold, S.

Astle, M. J.

R. C. Weast, M. J. Astle, and W. H. Beyer, ed. (CRC Press, Boca Raton 1986–1987), pp. E374–E375.

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 1989), Chap. 6.

Beyer, W. H.

R. C. Weast, M. J. Astle, and W. H. Beyer, ed. (CRC Press, Boca Raton 1986–1987), pp. E374–E375.

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery mode rsonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
[Crossref] [PubMed]

R. P. Kenny, T. A. Birks, and K. P. Oarkley, “Control of optical fibre taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[Crossref]

Borselli, M.

Carmon, J.

Chao, C. Y.

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Chbouki, N.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Cheung, G.

Cho, S. Y.

S. Y. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
[Crossref]

Chremmos, I. D.

Cruz, J. L.

Demirel, A. L.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

Desai, T. A.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Díez, A.

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

Dündar, M. A.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

Fan, X.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
[Crossref] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, , “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.  89, 191106 (2006).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Gill, D.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Goldberg, B. B.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Guo, L. J.

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

Hanumegowda, N. M.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Holler, S.

Hossein-Zadeh, M.

Hryniewicz, J.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

Jacques, F.

Johnson, T. J.

Jokerst, N. M.

S. Y. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
[Crossref]

K. J.,

Kakarantzas, G.

Kenny, R. P.

R. P. Kenny, T. A. Birks, and K. P. Oarkley, “Control of optical fibre taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[Crossref]

Khoshsima, M.

King, O.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Kiraz, A.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery mode rsonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
[Crossref] [PubMed]

Kurt, A.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

Little, B. E.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

Oarkley, K. P.

R. P. Kenny, T. A. Birks, and K. P. Oarkley, “Control of optical fibre taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[Crossref]

Oveys, H.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
[Crossref] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, , “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.  89, 191106 (2006).
[Crossref]

Painter, O.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Popat, K. C.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, , “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.  89, 191106 (2006).
[Crossref]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Suter, J. D.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

Teraoka, I.

Ünlü, M. S.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Uzunoglu, N. K.

Van, V.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Vhu, S.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Vollmer, F.

Weast, R. C.

R. C. Weast, M. J. Astle, and W. H. Beyer, ed. (CRC Press, Boca Raton 1986–1987), pp. E374–E375.

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

White, I. M.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, , “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.  89, 191106 (2006).
[Crossref]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
[Crossref] [PubMed]

Yalçin, A.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

Yang, L.

Zhang, J.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, , “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.  89, 191106 (2006).
[Crossref]

Zhu, H.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

Zourob, M.

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

Appl. Phys. Lett. (4)

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, , “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.  89, 191106 (2006).
[Crossref]

Electron. Lett. (1)

R. P. Kenny, T. A. Birks, and K. P. Oarkley, “Control of optical fibre taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Vhu, D. Gill, M. Anthes-Washburn, M. S. Ünlü , and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Y. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
[Crossref]

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

IEEE Sens. J. (1)

I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for Lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (3)

Other (2)

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 1989), Chap. 6.

R. C. Weast, M. J. Astle, and W. H. Beyer, ed. (CRC Press, Boca Raton 1986–1987), pp. E374–E375.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(Left) TMz WGM resonances wavelength of azimuthal order m=25 and radial order l, a=5 µm and d=1 µm, versus the internal refractive index (the dashed lines denote a Q factor lower than 500). (Right) Wavelength shift for both TMz (solid line) and TEz (dashed line) resonances of azimuthal order m=25, radial order l=1 and a=5 µm, for three values of the wall thickness (d=1.25, 1.00 and 0.75 µm), versus the internal refractive index.

Fig. 2.
Fig. 2.

SEM image of four capillaries: (a) a=76 µm, d=20 µm (example of a capillary before tapering), (b) a=9.9 µm, d=3.1 µm (example of a capillary tapered down without pressurization), (c) a=5.5 µm, d=0.8 µm (example of a submicron wall thickness capillary tapered with a pressure of 2 bar) and (d) a=7.5 µm, d=0.45 µm (another example of submicron wall thickness capillary tapered with a pressure of 2 bar). (e) Relative radius a/an versus the pressure applied to the capillary. (f) Normalized ratio η=d/a versus the relative radius a/an .

Fig. 3.
Fig. 3.

(Left) Scheme of the experimental arrangement. (Right) Transmission spectra for the TEz (top) and TMz (bottom) WGM resonances and for a refractive index of 1.52. Each resonance is identified with its azimuthal order m.

Fig. 4.
Fig. 4.

Calibration of WGM resonances as a function of the refractive index for two thin capillaries: (left) a=5.5 µm and d=0.8 µm and (right) a=4.5 µm and d=0.8 µm. TMz (top) and TEz (bottom) WGM resonances. Each resonance is identified with its azimuthal order m.

Fig. 5.
Fig. 5.

Transmission spectra for the TMz (left) and TEz (right) WGM resonances of a capillary with a=4.5 µm and d=0.8 µm, when it is filled with air (top) and with a liquid of high refractive index (bottom), n=1.7. Each resonance is identified with its azimuthal order m. The arrows point the second radial order resonances, l=2.

Metrics