Abstract

We investigate the fundamental issues of power transfer and far-field retrieval of subwavelength information in resonantly enhanced near-field imaging systems. It is found that high-quality resonance of the imaging system, such as that provided by dielectric resonators, can drastically enhance the power transfer from the object to the detector or the working distance. The optimal power transfer condition is shown to be the same as the critical coupling condition for resonators. The combination of a dielectric planar resonator with a solid immersion lens is proposed to project resonantly enhanced near-field spatial frequency components into the far field with the same resolution limit as that for solid immersion microscopy, but with much improved signal power throughput or working distance for resonant spatial frequencies.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Imaging properties of dielectric photonic crystal slabs for large object distances

Guilin Sun, Aju S. Jugessur, and Andrew G. Kirk
Opt. Express 14(15) 6755-6765 (2006)

Reflectionless evanescent-wave amplification by two dielectric planar waveguides

Mankei Tsang and Demetri Psaltis
Opt. Lett. 31(18) 2741-2743 (2006)

Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit

Stéphane Durant, Zhaowei Liu, Jennifer M. Steele, and Xiang Zhang
J. Opt. Soc. Am. B 23(11) 2383-2392 (2006)

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [Crossref] [PubMed]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  3. V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  4. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
    [Crossref] [PubMed]
  5. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
    [Crossref]
  6. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, “Metrics for negative-refractive-index materials,” Phys. Rev. E 70, 035602(R) (2004).
  7. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
    [Crossref]
  8. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [Crossref] [PubMed]
  9. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
    [Crossref] [PubMed]
  10. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
  11. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).
  12. M. Tsang and D. Psaltis, “Reflectionless evanescent wave amplification via two dielectric planar waveguides,” Opt. Lett. 31, 2741–2743 (2006).
    [Crossref] [PubMed]
  13. M. Tsang and D. Psaltis, “Reflectionless evanescent wave amplification via two dielectric planar waveguides: erratum,” Opt. Lett. 32, 86 (2007).
    [Crossref]
  14. R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation (Wiley, New York, 1960).
  15. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321 (2000).
    [Crossref]
  16. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [Crossref] [PubMed]
  17. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [Crossref]
  18. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
    [Crossref]
  19. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
    [Crossref]
  20. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
    [Crossref] [PubMed]
  21. I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).
  22. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
  23. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [Crossref] [PubMed]
  24. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [Crossref] [PubMed]
  25. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
    [Crossref] [PubMed]
  26. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1989).
  27. D. F. Edwards and E. Ochoa, “Infrared refractive index of diamond,” J. Opt. Soc. Am.71, 607–608 (1981), and references therein.
    [Crossref]
  28. C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. R. Soc. London, Ser. A 277, 312–329 (1964).
    [Crossref]
  29. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).
  30. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
    [Crossref] [PubMed]
  31. A. Yariv, Quantum Electronics (Wiley, New York, 2001).
  32. M. Shinodaet al., “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45, 1311–1313 (2006).
    [Crossref]
  33. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
    [Crossref]
  34. S. H. Zaidi and S. R. J. Brueck, “Multiple-exposure interferometric lithography,” J. Vac. Sci. Technol. B 11, 658–666 (1993).
  35. S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
    [Crossref]
  36. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).
  37. P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
    [Crossref]
  38. A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” e-print arXiv:physics/0611063v2 (Ann. Phys., in press).
  39. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
    [Crossref] [PubMed]
  40. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
    [Crossref] [PubMed]
  41. M. Tsang, “Relationship between resolution enhancement and multiphoton absorption rate in quantum lithography,” Phys. Rev. A 75, 043813 (2007).
  42. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
    [Crossref]
  43. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
    [Crossref]
  44. M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335
  45. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
    [Crossref] [PubMed]
  46. V. Anant, M. Rådmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, “Pumped quantum systems: Immersion fluids of the future?” J. Vac. Sci. Technol. B 23, 2662–2667 (2005).

2007 (6)

M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
[Crossref]

M. Tsang and D. Psaltis, “Reflectionless evanescent wave amplification via two dielectric planar waveguides: erratum,” Opt. Lett. 32, 86 (2007).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
[Crossref] [PubMed]

M. Tsang, “Relationship between resolution enhancement and multiphoton absorption rate in quantum lithography,” Phys. Rev. A 75, 043813 (2007).

2006 (7)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[Crossref]

M. Shinodaet al., “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45, 1311–1313 (2006).
[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

M. Tsang and D. Psaltis, “Reflectionless evanescent wave amplification via two dielectric planar waveguides,” Opt. Lett. 31, 2741–2743 (2006).
[Crossref] [PubMed]

2005 (5)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[Crossref] [PubMed]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

V. Anant, M. Rådmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, “Pumped quantum systems: Immersion fluids of the future?” J. Vac. Sci. Technol. B 23, 2662–2667 (2005).

2004 (2)

M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
[Crossref] [PubMed]

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, “Metrics for negative-refractive-index materials,” Phys. Rev. E 70, 035602(R) (2004).

2003 (3)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).

2002 (2)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[Crossref] [PubMed]

2000 (4)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321 (2000).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

1999 (2)

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

1998 (1)

S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
[Crossref]

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

1993 (1)

S. H. Zaidi and S. R. J. Brueck, “Multiple-exposure interferometric lithography,” J. Vac. Sci. Technol. B 11, 658–666 (1993).

1992 (1)

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

1991 (1)

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[Crossref] [PubMed]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

1968 (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

1964 (1)

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. R. Soc. London, Ser. A 277, 312–329 (1964).
[Crossref]

Abouraddy, A. F.

V. Anant, M. Rådmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, “Pumped quantum systems: Immersion fluids of the future?” J. Vac. Sci. Technol. B 23, 2662–2667 (2005).

Abrams, D. S.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Adler, R. B.

R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation (Wiley, New York, 1960).

Alekseyev, L. V.

Anant, V.

V. Anant, M. Rådmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, “Pumped quantum systems: Immersion fluids of the future?” J. Vac. Sci. Technol. B 23, 2662–2667 (2005).

Berggren, K. K.

V. Anant, M. Rådmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, “Pumped quantum systems: Immersion fluids of the future?” J. Vac. Sci. Technol. B 23, 2662–2667 (2005).

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

Blaikie, R. J.

Boto, A. N.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Braunstein, S. L.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Brueck, S. R. J.

S. H. Zaidi and S. R. J. Brueck, “Multiple-exposure interferometric lithography,” J. Vac. Sci. Technol. B 11, 658–666 (1993).

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Candès, E. J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Chu, L. J.

R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation (Wiley, New York, 1960).

Clark, C. D.

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. R. Soc. London, Ser. A 277, 312–329 (1964).
[Crossref]

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

Dean, P. J.

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. R. Soc. London, Ser. A 277, 312–329 (1964).
[Crossref]

Dholakia, K.

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[Crossref]

Dowling, J. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Edwards, D. F.

D. F. Edwards and E. Ochoa, “Infrared refractive index of diamond,” J. Opt. Soc. Am.71, 607–608 (1981), and references therein.
[Crossref]

Elings, V. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

Elliot, J.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).

Fainman, Y.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Fano, R. M.

R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation (Wiley, New York, 1960).

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Fisher, P.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
[Crossref] [PubMed]

Fujiura, K.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

Furuki, M.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

Garcés-Chávez, V.

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[Crossref]

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[Crossref] [PubMed]

Ghislain, L. P.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Harris, P. V.

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. R. Soc. London, Ser. A 277, 312–329 (1964).
[Crossref]

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1989).

Jacob, Z.

Joannopoulos, J. D.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
[Crossref] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” e-print arXiv:physics/0611063v2 (Ann. Phys., in press).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

Karalis, A.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
[Crossref] [PubMed]

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” e-print arXiv:physics/0611063v2 (Ann. Phys., in press).

Killian, T. C.

V. Anant, M. Rådmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, “Pumped quantum systems: Immersion fluids of the future?” J. Vac. Sci. Technol. B 23, 2662–2667 (2005).

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Kok, P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Kondo, T.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

Kurs, A.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Leizer, A.

S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
[Crossref]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).

Melville, D. O. S.

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

Moffatt, R.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
[Crossref] [PubMed]

Nakaoki, A.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

Narimanov, E.

Nelson, K. A.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, “Metrics for negative-refractive-index materials,” Phys. Rev. E 70, 035602(R) (2004).

Nezhad, M. P.

Nieto-Vesperinas, M.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[Crossref] [PubMed]

Ochoa, E.

D. F. Edwards and E. Ochoa, “Infrared refractive index of diamond,” J. Opt. Soc. Am.71, 607–608 (1981), and references therein.
[Crossref]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Pendry, J. B.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Psaltis, D.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

Rådmark, M.

V. Anant, M. Rådmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, “Pumped quantum systems: Immersion fluids of the future?” J. Vac. Sci. Technol. B 23, 2662–2667 (2005).

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).

Reece, P. J.

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[Crossref]

Romberg, J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

Ruschin, S.

S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
[Crossref]

Saito, K.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).

Sasaura, M.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Scully, M. O.

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[Crossref] [PubMed]

Shinoda, M.

M. Shinodaet al., “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45, 1311–1313 (2006).
[Crossref]

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

Smolyaninov, I. I.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Soljacic, M.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
[Crossref] [PubMed]

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” e-print arXiv:physics/0611063v2 (Ann. Phys., in press).

Stockman, M. I.

M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
[Crossref]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Takeda, M.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

Tao, T.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

Tetz, K.

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

Tsang, M.

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Veselago, V. G.

V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Ward, D. W.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, “Metrics for negative-refractive-index materials,” Phys. Rev. E 70, 035602(R) (2004).

Webb, K. J.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, “Metrics for negative-refractive-index materials,” Phys. Rev. E 70, 035602(R) (2004).

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

Williams, C. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Wurtz, G. A.

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

Yang, M.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, “Metrics for negative-refractive-index materials,” Phys. Rev. E 70, 035602(R) (2004).

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321 (2000).
[Crossref]

A. Yariv, Quantum Electronics (Wiley, New York, 2001).

Zaidi, S. H.

S. H. Zaidi and S. R. J. Brueck, “Multiple-exposure interferometric lithography,” J. Vac. Sci. Technol. B 11, 658–666 (1993).

Zayats, A. V.

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).
[Crossref]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999).
[Crossref]

P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006).
[Crossref]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321 (2000).
[Crossref]

IEEE Trans. Inf. Theory (1)

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998).
[Crossref]

J. Vac. Sci. Technol. (2)

S. H. Zaidi and S. R. J. Brueck, “Multiple-exposure interferometric lithography,” J. Vac. Sci. Technol. B 11, 658–666 (1993).

V. Anant, M. Rådmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, “Pumped quantum systems: Immersion fluids of the future?” J. Vac. Sci. Technol. B 23, 2662–2667 (2005).

Jpn. J. Appl. Phys. (2)

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys. 45, 1332–1335

M. Shinodaet al., “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45, 1311–1313 (2006).
[Crossref]

Nature (London) (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (7)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003).

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, “Metrics for negative-refractive-index materials,” Phys. Rev. E 70, 035602(R) (2004).

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005).

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003).

M. Tsang, “Relationship between resolution enhancement and multiphoton absorption rate in quantum lithography,” Phys. Rev. A 75, 043813 (2007).

Phys. Rev. Lett. (7)

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref] [PubMed]

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[Crossref] [PubMed]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005).
[Crossref] [PubMed]

Proc. R. Soc. London, Ser. (1)

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. R. Soc. London, Ser. A 277, 312–329 (1964).
[Crossref]

Science (5)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317, 83–86 (2007).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Other (6)

R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation (Wiley, New York, 1960).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1989).

D. F. Edwards and E. Ochoa, “Infrared refractive index of diamond,” J. Opt. Soc. Am.71, 607–608 (1981), and references therein.
[Crossref]

A. Yariv, Quantum Electronics (Wiley, New York, 2001).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” e-print arXiv:physics/0611063v2 (Ann. Phys., in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

An ideal near-field surface current source that produces a TE evanescent wave.

Fig. 2.
Fig. 2.

A near-field imaging device together with a detector located at a working distance d away from the current source.

Fig. 3.
Fig. 3.

A realistic near-field source that converts an input propagating wave E I into an evanescent wave E i , to be detected by the imaging system, and a reflected wave E R that carries unused power away from the source.

Fig. 4.
Fig. 4.

Schematic of RESIM (left), compared with that of conventional solid immersion microscopy (right). The figures are not drawn to scale.

Fig. 5.
Fig. 5.

Logarithmic plots of transmitted spatial frequency spectra of a RESIM device in front of a TE current line source for various parameters, compared with that of a solid immersion lens without the slab for the same working distance. Spatial frequency components with kx /k >1 are evanescent in free space. Other parameters are described in the text.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

J ( x ) = y ̂ K δ ( z ) exp ( i k x x ) ,
E i ( x ) = y ̂ i K μ 0 ω 2 κ exp ( κ z + i k x x ) ,
H i ( x ) = K 2 ( x ̂ + z ̂ i k x κ ) exp ( κ z + i k x x ) ,
P = 1 2 d 3 x Re { J * · E } .
E r ( z = d ) = Γ E i ( z = d ) ,
E r ( z = 0 ) = y ̂ i Γ K μ 0 ω 2 κ exp ( 2 κ d ) exp ( i k x x ) ,
P A = K 2 μ 0 ω 4 κ Im { Γ } exp ( 2 κ d ) ,
S z ( 0 < z < d ) = 1 2 Re { E × H * } · z ̂ P A .
Im { Γ } resonance 4 ( 1 k 2 k x 2 ) Q < 4 Q .
( E i E R ) = ( t r r t ) ( E I E r ) .
S z ( 0 < z < d ) = κ μ 0 ω t E I 1 r Γ exp ( 2 κ d ) 2 Im { Γ } exp ( 2 κ d ) .
S z κ μ 0 ω t E I 2 Im { Γ } exp ( 2 κ d ) .
S z κ μ 0 ω t E I r ' 2 Im { Γ } Γ 2 exp ( 2 κ d ) .
E R = r + Γ ( tt rr ) exp ( 2 κ d ) 1 Γ r exp ( 2 κ d ) E I .
Γ exp ( 2 κ d ) = r tt rr .
J ( x ) = y ̂ I δ ( z ) δ ( x ) ,
E ( z = d + a + b ) = y ̂ μ 0 ω I 2 τ ( k x ) k 2 k x 2 ,
Q s k x L 2 π < n L λ .
E 0 ( x ) = d 3 x G ( x x ) · J ( x ) .
G = G f + G n ,
P n = 1 2 d 3 x d 3 x Re { J * ( x ) · G n ( x x ) · J ( x ) } = 0 .
E ( x ) = E 0 ( x ) + d 3 x Γ ( x , x ) · E 0 ( x ) .
P = 1 2 d 3 x d 3 x Re { J * ( x ) · G f ( x x ) · J ( x ) }
1 2 d 3 x d 3 x d 3 x Re { J * ( x ) · Γ ( x , x ) · G f ( x x ) · J ( x ) }
1 2 d 3 x d 3 x d 3 x Re { J * ( x ) · Γ ( x , x ) · G n ( x x ) · J ( x ) } .

Metrics