Abstract

We investigate the fundamental issues of power transfer and far-field retrieval of subwavelength information in resonantly enhanced near-field imaging systems. It is found that high-quality resonance of the imaging system, such as that provided by dielectric resonators, can drastically enhance the power transfer from the object to the detector or the working distance. The optimal power transfer condition is shown to be the same as the critical coupling condition for resonators. The combination of a dielectric planar resonator with a solid immersion lens is proposed to project resonantly enhanced near-field spatial frequency components into the far field with the same resolution limit as that for solid immersion microscopy, but with much improved signal power throughput or working distance for resonant spatial frequencies.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
    [CrossRef] [PubMed]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  3. V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  4. N. Garcia and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Phys. Rev. Lett. 88, 207403 (2002).
    [CrossRef] [PubMed]
  5. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
    [CrossRef]
  6. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative-refractive-index materials," Phys. Rev. E 70, 035602(R) (2004).
  7. M. I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Phys. Rev. Lett. 98, 177404 (2007).
    [CrossRef]
  8. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  9. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef] [PubMed]
  10. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).
  11. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
  12. M. Tsang and D. Psaltis, "Reflectionless evanescent wave amplification via two dielectric planar waveguides," Opt. Lett. 31, 2741-2743 (2006).
    [CrossRef] [PubMed]
  13. M. Tsang and D. Psaltis, "Reflectionless evanescent wave amplification via two dielectric planar waveguides: erratum," Opt. Lett. 32, 86 (2007).
    [CrossRef]
  14. R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation (Wiley, New York, 1960).
  15. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321 (2000).
    [CrossRef]
  16. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
    [CrossRef] [PubMed]
  17. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  18. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  19. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
    [CrossRef]
  20. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
    [CrossRef] [PubMed]
  21. I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
  22. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations," Phys. Rev. B 74, 075103 (2006).
  23. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
    [CrossRef] [PubMed]
  24. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  25. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-1701 (2007).
    [CrossRef] [PubMed]
  26. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1989).
  27. D. F. Edwards and E. Ochoa, "Infrared refractive index of diamond," J. Opt. Soc. Am. 71, 607-608 (1981), and references therein.
    [CrossRef]
  28. C. D. Clark, P. J. Dean, and P. V. Harris, "Intrinsic edge absorption in diamond," Proc. R. Soc. London, Ser. A 277, 312-329 (1964).
    [CrossRef]
  29. S. A. Ramakrishna and J. B. Pendry, "Removal of absorption and increase in resolution in a near-field lens via optical gain," Phys. Rev. B 67, 201101(R) (2003).
  30. M. P. Nezhad, K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072-4079 (2004).
    [CrossRef] [PubMed]
  31. A. Yariv, Quantum Electronics (Wiley, New York, 2001).
  32. M. Shinoda et al., "High-density near-field readout using diamond solid immersion lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
    [CrossRef]
  33. E. J. Cand`es, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory 52, 489-509 (2006).
    [CrossRef]
  34. S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).
  35. S. Ruschin and A. Leizer, "Evanescent Bessel beams," J. Opt. Soc. Am. A 15, 1139-1143 (1998).
    [CrossRef]
  36. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).
  37. P. J. Reece, V. Garc’es-Ch’avez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
    [CrossRef]
  38. A. Karalis, J. D. Joannopoulos, and M. Soljači’c, "Efficient wireless non-radiative mid-range energy transfer," e-print arXiv:physics/0611063v2 (Ann. Phys., in press).
  39. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljači’c, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-86 (2007).
    [CrossRef] [PubMed]
  40. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000).
    [CrossRef] [PubMed]
  41. M. Tsang, "Relationship between resolution enhancement and multiphoton absorption rate in quantum lithography," Phys. Rev. A 75, 043813 (2007).
  42. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
    [CrossRef]
  43. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett. 75, 4064-4066 (1999).
    [CrossRef]
  44. M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, "High-density near-field readout using solid immersion lens made of KTaO3 monocrystal," Jpn. J. Appl. Phys. 45, 1332-1335 (2006).
  45. M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855-1858 (1991).
    [CrossRef] [PubMed]
  46. V. Anant, M. Radmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, "Pumped quantum systems: Immersion fluids of the future?" J. Vac. Sci. Technol. B 23, 2662-2667 (2005).

2007

M. I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Phys. Rev. Lett. 98, 177404 (2007).
[CrossRef]

M. Tsang and D. Psaltis, "Reflectionless evanescent wave amplification via two dielectric planar waveguides: erratum," Opt. Lett. 32, 86 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljači’c, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-86 (2007).
[CrossRef] [PubMed]

M. Tsang, "Relationship between resolution enhancement and multiphoton absorption rate in quantum lithography," Phys. Rev. A 75, 043813 (2007).

2006

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, "High-density near-field readout using solid immersion lens made of KTaO3 monocrystal," Jpn. J. Appl. Phys. 45, 1332-1335 (2006).

P. J. Reece, V. Garc’es-Ch’avez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

M. Shinoda et al., "High-density near-field readout using diamond solid immersion lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

E. J. Cand`es, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory 52, 489-509 (2006).
[CrossRef]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations," Phys. Rev. B 74, 075103 (2006).

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
[CrossRef] [PubMed]

M. Tsang and D. Psaltis, "Reflectionless evanescent wave amplification via two dielectric planar waveguides," Opt. Lett. 31, 2741-2743 (2006).
[CrossRef] [PubMed]

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).

V. Anant, M. Radmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, "Pumped quantum systems: Immersion fluids of the future?" J. Vac. Sci. Technol. B 23, 2662-2667 (2005).

2004

2003

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).

2002

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).

N. Garcia and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef] [PubMed]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321 (2000).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000).
[CrossRef] [PubMed]

1999

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett. 75, 4064-4066 (1999).
[CrossRef]

1998

1994

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

1993

S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).

1992

E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

1991

M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855-1858 (1991).
[CrossRef] [PubMed]

1990

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1981

1968

V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

1964

C. D. Clark, P. J. Dean, and P. V. Harris, "Intrinsic edge absorption in diamond," Proc. R. Soc. London, Ser. A 277, 312-329 (1964).
[CrossRef]

Ann. Phys.

A. Karalis, J. D. Joannopoulos, and M. Soljači’c, "Efficient wireless non-radiative mid-range energy transfer," e-print arXiv:physics/0611063v2 (Ann. Phys., in press).

Appl. Phys. Lett.

P. J. Reece, V. Garc’es-Ch’avez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett. 75, 4064-4066 (1999).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Electron. Lett.

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321 (2000).
[CrossRef]

IEEE Trans. Inf. Theory

E. J. Cand`es, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory 52, 489-509 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).

V. Anant, M. Radmark, A. F. Abouraddy, T. C. Killian, and K. K. Berggren, "Pumped quantum systems: Immersion fluids of the future?" J. Vac. Sci. Technol. B 23, 2662-2667 (2005).

Jpn. J. Appl. Phys.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, M. Takeda, A. Nakaoki, M. Sasaura, and K. Fujiura, "High-density near-field readout using solid immersion lens made of KTaO3 monocrystal," Jpn. J. Appl. Phys. 45, 1332-1335 (2006).

M. Shinoda et al., "High-density near-field readout using diamond solid immersion lens," Jpn. J. Appl. Phys. 45, 1311-1313 (2006).
[CrossRef]

Nature (London)

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Tsang, "Relationship between resolution enhancement and multiphoton absorption rate in quantum lithography," Phys. Rev. A 75, 043813 (2007).

Phys. Rev. B

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002).

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).

I. I. Smolyaninov, C. C. Davis, J. Elliot, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations," Phys. Rev. B 74, 075103 (2006).

Phys. Rev. Lett.

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

M. I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Phys. Rev. Lett. 98, 177404 (2007).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

N. Garcia and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef] [PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000).
[CrossRef] [PubMed]

M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855-1858 (1991).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A

C. D. Clark, P. J. Dean, and P. V. Harris, "Intrinsic edge absorption in diamond," Proc. R. Soc. London, Ser. A 277, 312-329 (1964).
[CrossRef]

Science

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljači’c, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-86 (2007).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative-refractive-index materials," Phys. Rev. E 70, 035602(R) (2004).

R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation (Wiley, New York, 1960).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1989).

S. A. Ramakrishna and J. B. Pendry, "Removal of absorption and increase in resolution in a near-field lens via optical gain," Phys. Rev. B 67, 201101(R) (2003).

A. Yariv, Quantum Electronics (Wiley, New York, 2001).

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

An ideal near-field surface current source that produces a TE evanescent wave.

Fig. 2.
Fig. 2.

A near-field imaging device together with a detector located at a working distance d away from the current source.

Fig. 3.
Fig. 3.

A realistic near-field source that converts an input propagating wave E I into an evanescent wave E i , to be detected by the imaging system, and a reflected wave E R that carries unused power away from the source.

Fig. 4.
Fig. 4.

Schematic of RESIM (left), compared with that of conventional solid immersion microscopy (right). The figures are not drawn to scale.

Fig. 5.
Fig. 5.

Logarithmic plots of transmitted spatial frequency spectra of a RESIM device in front of a TE current line source for various parameters, compared with that of a solid immersion lens without the slab for the same working distance. Spatial frequency components with kx /k >1 are evanescent in free space. Other parameters are described in the text.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

J ( x ) = y ̂ K δ ( z ) exp ( i k x x ) ,
E i ( x ) = y ̂ i K μ 0 ω 2 κ exp ( κ z + i k x x ) ,
H i ( x ) = K 2 ( x ̂ + z ̂ i k x κ ) exp ( κ z + i k x x ) ,
P = 1 2 d 3 x Re { J * · E } .
E r ( z = d ) = Γ E i ( z = d ) ,
E r ( z = 0 ) = y ̂ i Γ K μ 0 ω 2 κ exp ( 2 κ d ) exp ( i k x x ) ,
P A = K 2 μ 0 ω 4 κ Im { Γ } exp ( 2 κ d ) ,
S z ( 0 < z < d ) = 1 2 Re { E × H * } · z ̂ P A .
Im { Γ } resonance 4 ( 1 k 2 k x 2 ) Q < 4 Q .
( E i E R ) = ( t r r t ) ( E I E r ) .
S z ( 0 < z < d ) = κ μ 0 ω t E I 1 r Γ exp ( 2 κ d ) 2 Im { Γ } exp ( 2 κ d ) .
S z κ μ 0 ω t E I 2 Im { Γ } exp ( 2 κ d ) .
S z κ μ 0 ω t E I r ' 2 Im { Γ } Γ 2 exp ( 2 κ d ) .
E R = r + Γ ( tt rr ) exp ( 2 κ d ) 1 Γ r exp ( 2 κ d ) E I .
Γ exp ( 2 κ d ) = r tt rr .
J ( x ) = y ̂ I δ ( z ) δ ( x ) ,
E ( z = d + a + b ) = y ̂ μ 0 ω I 2 τ ( k x ) k 2 k x 2 ,
Q s k x L 2 π < n L λ .
E 0 ( x ) = d 3 x G ( x x ) · J ( x ) .
G = G f + G n ,
P n = 1 2 d 3 x d 3 x Re { J * ( x ) · G n ( x x ) · J ( x ) } = 0 .
E ( x ) = E 0 ( x ) + d 3 x Γ ( x , x ) · E 0 ( x ) .
P = 1 2 d 3 x d 3 x Re { J * ( x ) · G f ( x x ) · J ( x ) }
1 2 d 3 x d 3 x d 3 x Re { J * ( x ) · Γ ( x , x ) · G f ( x x ) · J ( x ) }
1 2 d 3 x d 3 x d 3 x Re { J * ( x ) · Γ ( x , x ) · G n ( x x ) · J ( x ) } .

Metrics