Abstract

Ultra-compact 5th order ring resonator optical filters based on submicron silicon photonic wires are demonstrated. Out-of-band rejection ratio of 40dB, 1dB flat-top pass band of 310GHz with ripples smaller than 0.4dB, and insertion loss of only (1.8±0.5)dB at the center of the pass band are realized simultaneously, all within a footprint of 0.0007mm2 on a silicon chip.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
    [CrossRef]
  2. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, " Fabrication of add-drop filters based on frequency-matched microring resonators," J. Lightwave Technol. 24, 2207-2218 (2006).
    [CrossRef]
  3. F. Xia, M. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact silicon WDM optical filters with flat-top response for on-chip optical interconnects," in Conference on Lasers and Electro-Optics 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), paper CTuG3.
  4. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006).
    [CrossRef] [PubMed]
  5. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
    [CrossRef]
  6. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. -T. Ho, "High order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
    [CrossRef]
  7. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  8. F. Xia, L. Sekaric, and Yu. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
    [CrossRef]
  9. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  10. Y. Ye, J. Ding, D. Y. Jeong, I. C. Khoo and Q. M. Zhang, "Finite-size effect on one dimensional coupled resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
  11. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 12, 90-103 (2004).
    [CrossRef] [PubMed]
  12. F. Xia, L. Sekaric, M. O’Boyle, and Y. A. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
    [CrossRef]
  13. F. Xia, L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express 14, 3872-3886 (2006).
    [CrossRef] [PubMed]
  14. E. Dulkeith, F. Xia, L. Schares, W. M. Green, Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006).
    [CrossRef] [PubMed]
  15. C. Madsen and J. Zhao, Optical filter design and analysis: A signal processing approach (New York: Wiley-interscience, 1999), Chap. 5.
  16. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators," Opt. Lett. 25, 344-346 (2000).
    [CrossRef]
  17. S. L. Chuang, Physics of Optoelectronic Devices (New York: Wiley-interscience, 1995), Chap. 8.
  18. M. Popovic, C. Manolatou, and M. Watts, "Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Express 14, 1208-1222 (2006).
    [CrossRef] [PubMed]
  19. T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
    [CrossRef] [PubMed]

2007 (1)

F. Xia, L. Sekaric, and Yu. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

2006 (6)

2004 (5)

J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 12, 90-103 (2004).
[CrossRef] [PubMed]

T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

Y. Ye, J. Ding, D. Y. Jeong, I. C. Khoo and Q. M. Zhang, "Finite-size effect on one dimensional coupled resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

2000 (2)

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. -T. Ho, "High order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators," Opt. Lett. 25, 344-346 (2000).
[CrossRef]

1999 (1)

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

F. Xia, L. Sekaric, M. O’Boyle, and Y. A. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si/SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. -T. Ho, "High order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Nature Photon. (1)

F. Xia, L. Sekaric, and Yu. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. E (1)

Y. Ye, J. Ding, D. Y. Jeong, I. C. Khoo and Q. M. Zhang, "Finite-size effect on one dimensional coupled resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).

Other (3)

F. Xia, M. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact silicon WDM optical filters with flat-top response for on-chip optical interconnects," in Conference on Lasers and Electro-Optics 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), paper CTuG3.

S. L. Chuang, Physics of Optoelectronic Devices (New York: Wiley-interscience, 1995), Chap. 8.

C. Madsen and J. Zhao, Optical filter design and analysis: A signal processing approach (New York: Wiley-interscience, 1999), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulated responses of optical filters with 3 and 5 coupled ring resonators. The responses as functions of both FSR (for ring resonators with arbitrary size, in bottom x-axis) and absolute wavelength detuning (for ring resonators with properly designed physical dimensions in section 2, in top x-axis) are shown. Inset: schematic drawings of filters comprised of 3 and 5 ring resonators.

Fig. 2.
Fig. 2.

Simulated power beating length, LB, between two parallel photonic wires as a function of air gap distance between them. LB represents a length within which optical power transfers completely from one waveguide to another and is calculated through the index difference between the even (nE) and odd (nO) modes. The indices are calculated using a commercial FimmWave software package, version 4.3.4.

Fig. 3.
Fig. 3.

Scanning electron micrograph (SEM) images of fabricated optical filters with 5 ring resonators.

Fig. 4.
Fig. 4.

Experimental transmission responses of optical filters with 3 and 5 coupled ring resonators. The measured out-of-band rejection ratio (~40dB) for optical filters with 5 resonators is limited by the sensitivity of the experimental setup and can be larger.

Fig. 5.
Fig. 5.

Experimental transmission responses of optical filter with 5 coupled ring resonators containing two FSRs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L B = λ 2 ( n E n O )
κ 2 = sin 2 ( π 2 L C L B )
L P = 2 π r + 2 L C
Δ ( κ 2 ) = π 2 L C sin ( π L C L B ) 1 L B 2 Δ L B

Metrics