Abstract

We report on continuous-wave second harmonic generation of near infrared Ti:sapphire lasers using room temperature critically phase-matched, angle-tuned BIBO (bismuth triborate, BiB3O6) crystals, placed both in an external power enhancement cavity and inside the laser resonator. In the first case we generate 70 mW of single-frequency radiation at 423 nm for 330 mW of input power at 846 nm. For intracavity frequency doubling we achieve 690 mW at 423 nm for 7.3 Watts of the Ti:sapphire laser pump power at 532 nm, representing a conversion efficiency of 9.5% from 532 to 423 nm. These tunable blue-violet systems are particularly attractive for laser cooling and trapping of alkaline-Earth atoms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Ruseva and J. Hald, "Generation of UV light by frequency doubling in BIBO," Opt. Commum 236, 219-223 (2004).
    [CrossRef]
  2. H. Mabuchi, E. S. Polzik, and H. J. Kimble, "Blue-light-induced infrared absorption in KNbO3, " J. Opt. Soc. Am. B 11, 2023-2029 (1994).
  3. F. Villa, A. Chiummo, E. Giacobino, and Alberto Bramati, "High-efficiency blue-light generation with a ring cavity with periodically poled KTP," J. Opt. Soc. Am. B 24, 576-580 (2007).
  4. R. L. Cavasso Filho, D. A. Manoel, D. R. Ortega, A. Scalabrin, D. Pereira, and F.C. Cruz, "On-axis Calcium magneto-optical trap loaded with a focused decelerating laser," Appl. Phys. B. 78, 49-52 (2004).
    [CrossRef]
  5. G.D. Boyd and D.A. Kleinman, "Parametric Interactions of Focused Gaussian Light Beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]
  6. SNLO nonlinear optics code available from A.V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423.
  7. M. H. Dunn and A. I. Ferguson, "Coma compensation in off-axis laser resonators," Opt. Commun. 20, 214-219 (1997).
    [CrossRef]
  8. T.W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
    [CrossRef]
  9. O. Zy, S. F. Pereira, E. S. Polzik, and H.J. Kimble, "85% efficiency for cw frequency doubling from 1.08 to 0.54 μm," Opt. Lett. 17, 640-642 (1992).
    [CrossRef]
  10. T. Baer, "Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers," J. Opt. Soc. Am. B 3,1175-1180 (1986).
  11. M. Thorhauge, J.L. Mortsen, P. Tidemand-Lichtenberg, and B. Buchhave, "Tunable intra-cavity SHG of CW Ti:sapphire lasers around 785 nm and 810 nm in BIBO-crystals," Opt. Express 14, 2283-2288 (2006).
    [CrossRef] [PubMed]
  12. T. Schmitt, A. Deninger, F. Lison, W. Kaenders, "Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers," Proc. SPIE 5707, 16-22 (2005).
    [CrossRef]
  13. F. Villa, A. Chiummo, E. Giacobino, and Alberto Bramati, "High-efficiency blue-light generation with a ring cavity with periodically poled KTP," J. Opt. Soc. Am. B 24, 576-580 (2007).

2007 (2)

2006 (1)

2005 (1)

T. Schmitt, A. Deninger, F. Lison, W. Kaenders, "Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers," Proc. SPIE 5707, 16-22 (2005).
[CrossRef]

2004 (2)

R. L. Cavasso Filho, D. A. Manoel, D. R. Ortega, A. Scalabrin, D. Pereira, and F.C. Cruz, "On-axis Calcium magneto-optical trap loaded with a focused decelerating laser," Appl. Phys. B. 78, 49-52 (2004).
[CrossRef]

P. Ruseva and J. Hald, "Generation of UV light by frequency doubling in BIBO," Opt. Commum 236, 219-223 (2004).
[CrossRef]

1997 (1)

M. H. Dunn and A. I. Ferguson, "Coma compensation in off-axis laser resonators," Opt. Commun. 20, 214-219 (1997).
[CrossRef]

1994 (1)

1992 (1)

1986 (1)

1980 (1)

T.W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

1968 (1)

G.D. Boyd and D.A. Kleinman, "Parametric Interactions of Focused Gaussian Light Beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Appl. Phys. B. (1)

R. L. Cavasso Filho, D. A. Manoel, D. R. Ortega, A. Scalabrin, D. Pereira, and F.C. Cruz, "On-axis Calcium magneto-optical trap loaded with a focused decelerating laser," Appl. Phys. B. 78, 49-52 (2004).
[CrossRef]

J. Appl. Phys. (1)

G.D. Boyd and D.A. Kleinman, "Parametric Interactions of Focused Gaussian Light Beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commum (1)

P. Ruseva and J. Hald, "Generation of UV light by frequency doubling in BIBO," Opt. Commum 236, 219-223 (2004).
[CrossRef]

Opt. Commun. (2)

M. H. Dunn and A. I. Ferguson, "Coma compensation in off-axis laser resonators," Opt. Commun. 20, 214-219 (1997).
[CrossRef]

T.W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

T. Schmitt, A. Deninger, F. Lison, W. Kaenders, "Recent advances in non-linear frequency conversion of high-power, single-mode diode lasers," Proc. SPIE 5707, 16-22 (2005).
[CrossRef]

Other (1)

SNLO nonlinear optics code available from A.V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram showing our single-frequency Ti:sapphire ring laser and its frequency doubling into an external cavity, locked by the Hänsch-Couillaud technique [8]. The Ti:sapphire laser and doubling cavity lengths are 104 and 62 cm.

Fig. 2.
Fig. 2.

Schematic diagram for intracavity second harmonic generation in another Ti:sapphire laser (total cavity length is 114 cm). Two fold mirrors (ROC=5 cm) were used to produce a tight waist at the BIBO position. An optical diode and a thin coated etalon were introduced for single-frequency operation.

Fig. 3.
Fig. 3.

Second harmonic power at 423 nm as function of incident fundamental power, for the setup in Fig.1. Blue power has been corrected by 94% transmission of the OC at 423 nm and 80% mode-matching efficiency.

Fig. 4.
Fig. 4.

Second harmonic power at 423 nm as function of the Ti:sapphire pump power at 532 nm, for intracavity doubling with the setup of fig.2. Curve a (squares): multi-mode, bidirectional operation, no optical diode (OD) or thin etalon; curve b (circles): OD inserted; curve c (triangles): OD and thin etalon inserted, single-frequency operation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 2 ω = η P ω 2 = 2 ω 2 d eff 2 k ω π ε 0 n 1 2 n 2 c 3 L c P ω 2 h ( σ , B , ξ )
G = P C P I = T 1 2 ( 1 T ) ( 1 L ) + ( 1 T ) ( 1 L )

Metrics