Abstract

The technique of frequency shifting of sub-100 fs laser pulses was developed. It is based on the stimulated Raman scattering pair of chirped laser pulses with orthogonal polarization. The 50 fs laser pulse at the wavelength of 810 nm was converted to 68 fs Stokes pulse at the wavelength of 1060 nm with energy conversion efficiency of 20%.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Self-phase modulation and optical pulse compression influenced by stimulated Raman scattering in fibers

A. M. Weiner, J. P. Heritage, and R. H. Stolen
J. Opt. Soc. Am. B 5(2) 364-372 (1988)

Direct measurement of nonlinear frequency chirp of Raman radiation in single-mode optical fibers using a spectral window method

A. S. L. Gomes, V. L. da Silva, and J. R. Taylor
J. Opt. Soc. Am. B 5(2) 373-380 (1988)

Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers

E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and D. G. Fursa
J. Opt. Soc. Am. B 7(2) 172-181 (1990)

References

  • View by:
  • |
  • |
  • |

  1. V. Krylov, O. Ollikainen, U. P. Wild, A. Rebane, V. G. Bespalov, and D. I. Staselko, “Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am. B 152910–2916 (1998).
    [Crossref]
  2. V. Krylov, A. Rebane, O. Ollikainen, D. Erni, U. P. Wild, V. Bespalov, and D. Staselko, “Stimulated Raman scattering in hydrogen by frequency-doubled amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. 21381- (1996).
    [Crossref] [PubMed]
  3. L. L. Losev, J. Song, J. F. Xia, D. Strickland, and V. V. Brukhanov, “Multifrequency parametric infrared Raman generation in KGd(WO4)2 crystal with biharmonic ultrashort-pulse pumping,” Opt. Lett. 272100–2102 (2002).
    [Crossref]
  4. C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B. 59471–473 (1994).
    [Crossref]
  5. N. Zhavoronkov, F. Noack, V. Petrov, V. P. Kalosha, and J. Herrmann, “Chirped-pulse stimulated Raman scattering in barium nitrate with subsequent recompression,” Opt. Lett. 2647–49 (2001).
    [Crossref]
  6. J. N. Elgin and T. B. O’Hare, “Saturation effects in transient stimulated Raman scattering,” J. Phys. B 12159–168 (1979).
    [Crossref]
  7. M. M. T. Loy, P. P. Sorokin, and J. R. Lankard, ‘Generation of 16 µm radiation by four-wave mixing in parahydrogen,” Appl. Phys. Lett.30415–418 (1977).
    [Crossref]
  8. R. L. Byer and W. R. Trutna, “16 µm generation by CO2-pumped rotational Raman scattering in H2,” Opt. Lett. 3144–146 (1978).
    [Crossref] [PubMed]
  9. B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, “Principles of phase conjugation,” Berlin and New York, Springer-Verlag (Springer Series in Optical Sciences. Volume 42), 1985.
  10. D. C. Hanna, D. J. Pointer, and D. Pratt “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium and methane,” IEEE J. Quantum Electron. 22332–336 (1986).
    [Crossref]

2002 (1)

2001 (1)

1998 (1)

1996 (1)

1994 (1)

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B. 59471–473 (1994).
[Crossref]

1986 (1)

D. C. Hanna, D. J. Pointer, and D. Pratt “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium and methane,” IEEE J. Quantum Electron. 22332–336 (1986).
[Crossref]

1979 (1)

J. N. Elgin and T. B. O’Hare, “Saturation effects in transient stimulated Raman scattering,” J. Phys. B 12159–168 (1979).
[Crossref]

1978 (1)

Bespalov, V.

Bespalov, V. G.

Brukhanov, V. V.

Byer, R. L.

Canto-Said, E. J.

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B. 59471–473 (1994).
[Crossref]

Elgin, J. N.

J. N. Elgin and T. B. O’Hare, “Saturation effects in transient stimulated Raman scattering,” J. Phys. B 12159–168 (1979).
[Crossref]

Erni, D.

Hanna, D. C.

D. C. Hanna, D. J. Pointer, and D. Pratt “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium and methane,” IEEE J. Quantum Electron. 22332–336 (1986).
[Crossref]

Herrmann, J.

Jordan, C.

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B. 59471–473 (1994).
[Crossref]

Kalosha, V. P.

Krylov, V.

Lankard, J. R.

M. M. T. Loy, P. P. Sorokin, and J. R. Lankard, ‘Generation of 16 µm radiation by four-wave mixing in parahydrogen,” Appl. Phys. Lett.30415–418 (1977).
[Crossref]

Losev, L. L.

Loy, M. M. T.

M. M. T. Loy, P. P. Sorokin, and J. R. Lankard, ‘Generation of 16 µm radiation by four-wave mixing in parahydrogen,” Appl. Phys. Lett.30415–418 (1977).
[Crossref]

Marowsky, G.

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B. 59471–473 (1994).
[Crossref]

Noack, F.

O’Hare, T. B.

J. N. Elgin and T. B. O’Hare, “Saturation effects in transient stimulated Raman scattering,” J. Phys. B 12159–168 (1979).
[Crossref]

Ollikainen, O.

Petrov, V.

Pilipetskii, N. F.

B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, “Principles of phase conjugation,” Berlin and New York, Springer-Verlag (Springer Series in Optical Sciences. Volume 42), 1985.

Pointer, D. J.

D. C. Hanna, D. J. Pointer, and D. Pratt “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium and methane,” IEEE J. Quantum Electron. 22332–336 (1986).
[Crossref]

Pratt, D.

D. C. Hanna, D. J. Pointer, and D. Pratt “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium and methane,” IEEE J. Quantum Electron. 22332–336 (1986).
[Crossref]

Rebane, A.

Shkunov, V. V.

B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, “Principles of phase conjugation,” Berlin and New York, Springer-Verlag (Springer Series in Optical Sciences. Volume 42), 1985.

Song, J.

Sorokin, P. P.

M. M. T. Loy, P. P. Sorokin, and J. R. Lankard, ‘Generation of 16 µm radiation by four-wave mixing in parahydrogen,” Appl. Phys. Lett.30415–418 (1977).
[Crossref]

Stankov, K. A.

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B. 59471–473 (1994).
[Crossref]

Staselko, D.

Staselko, D. I.

Strickland, D.

Trutna, W. R.

Wild, U. P.

Xia, J. F.

Zeldovich, B. Ya.

B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, “Principles of phase conjugation,” Berlin and New York, Springer-Verlag (Springer Series in Optical Sciences. Volume 42), 1985.

Zhavoronkov, N.

Appl. Phys. B. (1)

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B. 59471–473 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

D. C. Hanna, D. J. Pointer, and D. Pratt “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium and methane,” IEEE J. Quantum Electron. 22332–336 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

J. N. Elgin and T. B. O’Hare, “Saturation effects in transient stimulated Raman scattering,” J. Phys. B 12159–168 (1979).
[Crossref]

Opt. Lett. (4)

Other (2)

B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, “Principles of phase conjugation,” Berlin and New York, Springer-Verlag (Springer Series in Optical Sciences. Volume 42), 1985.

M. M. T. Loy, P. P. Sorokin, and J. R. Lankard, ‘Generation of 16 µm radiation by four-wave mixing in parahydrogen,” Appl. Phys. Lett.30415–418 (1977).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The schematic diagram of experimental setup. P: thin film polarizer, λ/2: half-wave plate, M: high-reflected mirror, L: lenses (f=60 cm), black line: laser radiation at the wavelength of 810 nm, red line: first Stokes radiation at the wavelength of 1060 nm.

Fig. 2.
Fig. 2.

The dependence of energy conversion efficiency to the first Stokes component on the pump pulse energy at single pulse pumping.

Fig. 3.
Fig. 3.

Spectra of input (a) and output (b) laser radiation, first Stokes component (c) at pumping only by p-polarized pulse.

Fig. 4.
Fig. 4.

The spectrum of s-polarized first Stokes component at two-pulse excitation (a) and autocorrelation trace of the compressed Stokes pulse (b). The red line in (b) is sech2 fit.

Metrics