Abstract

A probe light in a squeezed vacuum state was injected into cold 87Rb atoms with an intense control light in a coherent state. A sub-MHz window was created due to electromagnetically induced transparency, and the incident squeezed vacuum could pass through the cold atoms without optical loss, as was successfully monitored using a time-domain homodyne method.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. E. Kozhekin, K. Mølmer, and E. Polzik, "Quantum memory for light," Phys. Rev. A 62, 033809/1-5 (2000).
    [CrossRef]
  2. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature (London) 432, 482-486 (2004).
    [CrossRef]
  3. M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: dark-state polaritons," Phys. Rev. A 65, 022314/1-12 (2002).
    [CrossRef]
  4. D. F. Phillips, A, Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett. 86, 783-786 (2001).
    [CrossRef] [PubMed]
  5. T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S. -Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature (London) 438, 833-836 (2005).
    [CrossRef]
  6. M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature (London) 438, 837-841 (2005).
    [CrossRef]
  7. K. Akiba, K. Kashiwagi, T. Yonehara, and M. Kozuma, "Frequency-filtered storage of parametric fluorescence with electromagnetically induced transparency," Phys. Rev. A 76, 023812/1-5 (2007).
    [CrossRef]
  8. M. Kitagawa, and M. Ueda, "Squeezed spin states," Phys. Rev. A 47, 5138-5143 (1993).
    [CrossRef] [PubMed]
  9. J. Geremia, J. K. Stockton, A. C. Doherty, and H. Mabuchi, "Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry," Phys. Rev. Lett. 91, 250801/1-4 (2003).
    [CrossRef]
  10. D. Akamatsu, K. Akiba, and M. Kozuma, "Electromagnetically induced transparency with squeezed vacuum," Phys. Rev. Lett. 92, 203602/1-4 (2004).
    [CrossRef]
  11. D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, "Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency," quant-ph/061109 (to appear in Physical Review Letters).
  12. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, "Generation of a superposition of odd photon number states for quantum information networks," Phys. Rev. Lett. 97, 083604/1-4 (2006).
    [CrossRef]
  13. N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, "Time-gated Einstein-Podolsky-Rosen correlation," Phys. Rev. A 74, 060101/1-4 (2006).
    [CrossRef]
  14. T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, "Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4" Opt. lett. 31, 2344-2346 (2006).
    [CrossRef] [PubMed]
  15. M. Kourogi, B. Widiyatmoko, K. Imai, T. Shimizu, and M. Ohtsu, "Accurate relative frequency cancellation between two independent lasers," Opt. Lett. 24, 16-18 (1999).
    [CrossRef]
  16. E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit," Appl. Phys. B 55, 279-290 (1992).
    [CrossRef]
  17. B. Yurke, "Squeezed-coherent-state generation via four-wave mixers and detection via homodyne detectors," Phys. Rev. A 32, 300-310 (1985).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S. -Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature (London) 438, 833-836 (2005).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature (London) 438, 837-841 (2005).
[CrossRef]

2004 (1)

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature (London) 432, 482-486 (2004).
[CrossRef]

2001 (1)

D. F. Phillips, A, Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

1999 (1)

1993 (1)

M. Kitagawa, and M. Ueda, "Squeezed spin states," Phys. Rev. A 47, 5138-5143 (1993).
[CrossRef] [PubMed]

1992 (1)

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit," Appl. Phys. B 55, 279-290 (1992).
[CrossRef]

1985 (1)

B. Yurke, "Squeezed-coherent-state generation via four-wave mixers and detection via homodyne detectors," Phys. Rev. A 32, 300-310 (1985).
[CrossRef] [PubMed]

Appl. Phys. B (1)

E. S. Polzik, J. Carri, and H. J. Kimble, "Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit," Appl. Phys. B 55, 279-290 (1992).
[CrossRef]

Nature (London) (3)

T. Chaneliére, D. N. Matsukevich, S. D. Jenkins, S. -Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature (London) 438, 833-836 (2005).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature (London) 438, 837-841 (2005).
[CrossRef]

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature (London) 432, 482-486 (2004).
[CrossRef]

Opt. lett. (1)

Phys. Rev. A (2)

B. Yurke, "Squeezed-coherent-state generation via four-wave mixers and detection via homodyne detectors," Phys. Rev. A 32, 300-310 (1985).
[CrossRef] [PubMed]

M. Kitagawa, and M. Ueda, "Squeezed spin states," Phys. Rev. A 47, 5138-5143 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. F. Phillips, A, Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Other (8)

A. E. Kozhekin, K. Mølmer, and E. Polzik, "Quantum memory for light," Phys. Rev. A 62, 033809/1-5 (2000).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: dark-state polaritons," Phys. Rev. A 65, 022314/1-12 (2002).
[CrossRef]

J. Geremia, J. K. Stockton, A. C. Doherty, and H. Mabuchi, "Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry," Phys. Rev. Lett. 91, 250801/1-4 (2003).
[CrossRef]

D. Akamatsu, K. Akiba, and M. Kozuma, "Electromagnetically induced transparency with squeezed vacuum," Phys. Rev. Lett. 92, 203602/1-4 (2004).
[CrossRef]

D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, "Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency," quant-ph/061109 (to appear in Physical Review Letters).

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, "Generation of a superposition of odd photon number states for quantum information networks," Phys. Rev. Lett. 97, 083604/1-4 (2006).
[CrossRef]

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, "Time-gated Einstein-Podolsky-Rosen correlation," Phys. Rev. A 74, 060101/1-4 (2006).
[CrossRef]

K. Akiba, K. Kashiwagi, T. Yonehara, and M. Kozuma, "Frequency-filtered storage of parametric fluorescence with electromagnetically induced transparency," Phys. Rev. A 76, 023812/1-5 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup. BS: beam splitter, HBS: half beam splitter, AOM: acousto-optic modulator, PD: photodetector, PZT: piezo electric transducer, Amp.: RF amplifier, Sq. Vac.: squeezed vacuum.

Fig. 2.
Fig. 2.

Transmission spectrum of the coherent probe light as a function of the two-photon detuning. Trace (A) indicates transmission spectrum when the probe light was incident on the cold atoms with the control light. Trace (B) shows the spectrum without the control light.

Fig. 3.
Fig. 3.

(a) Quadrature noise of the probe light in the squeezed state. Trace (A) indicates the shot noise. Traces (B) and (C) show the quadrature noises of the probe light without cold atoms, where the relative phase were θ=π/2 and 0, respectively. Traces (D) and (E) show the quadrature noises when the probe light was incident on the cold atoms with the control light, where the relative phase were θ=π/2 and 0, respectively. (b) The numerically simulated noise spectrum for the squeezed vacuum passed through the cold atoms under the EIT condition. Trace (A) indicates the shot noise. Traces (B) and (C) show the quadrature noises for θ=π/2 and 0, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

X ̂ ( ν , θ ) = a ̂ ν 0 + ν exp ( i θ ) + a ̂ ν 0 ν exp ( i θ ) ,
X ̂ ( ν , θ , ϕ ) = a ̂ ν 0 + ν exp ( i θ ) exp ( i ϕ ) + a ̂ ν 0 ν exp ( i θ ) exp ( i ( ϕ ) ) .
Δ X ̂ ( ν , θ , ϕ ) 2 = ( X ̂ ( ν , θ , ϕ ) X ̂ ( ν , θ , ϕ ) ) ( X ̂ ( ν , θ , ϕ ) X ̂ ( ν , θ , ϕ ) ) Sym
= 1 2 X ̂ ( ν , θ , ϕ ) X ̂ ( ν , θ , ϕ ) + X ̂ ( ν , θ , ϕ ) X ̂ ( ν , θ , ϕ ) X ̂ ( ν , θ , ϕ ) X ̂ ( ν , θ , ϕ )
= 1 2 X ̂ ( ν , θ ) X ̂ ( ν , θ ) + X ̂ ( ν , θ ) X ̂ ( ν , θ ) X ̂ ( ν , θ ) X ̂ ( ν , θ )
= Δ X ̂ ( ν , θ ) 2
A ̂ B ̂ Sym = A ̂ B ̂ + B ̂ A ̂ 2 .
Δ X ̂ ( ν , θ ) 2 = 1 4 { T ( ν ) ( cosh 2 r cos 2 θ sinh 2 r ) + ( 1 T ( ν ) ) } ,

Metrics