Abstract

Optical near-fields, which appear in the vicinity of structures when irradiated with light, exhibit a hierarchical nature, meaning that the degree of localization of optical near-fields at a given point is related to the scale of the structure involved in this process. Therefore, if we could make optically induced fabrication processes selectively localized in the near-field region, we could generate a smaller-scale structure even from a larger-scale one via optical near-field interactions. We demonstrate the theoretical basis of this with an angular spectrum analysis of optical near-fields. We also experimentally demonstrate such principles by using ZnO nanoneedles fabricated through metal-organic vapor phase epitaxy (MOVPE) followed by a photo-induced MOVPE procedure where smaller-scale generated structures were clearly observed with the help of light irradiation. We also observed that the generated fine structures followed a power-law distribution, indicating that fractal structures emerged via optical near-field interactions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002).
    [CrossRef]
  2. For example, T. Yatsui, M. Kourogi, K. Tsutsui, J. Takahashi, and M. Ohtsu, "High-density-speed optical near-field recording-reading with a pyramidal silicon probe on a contact slider," Opt. Lett. 25, 1279-1281 (2000).
    [CrossRef]
  3. S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004).
    [CrossRef] [PubMed]
  4. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Demonstration of a nanophotonic switching operation by optical near-field energy transfer," Appl. Phys. Lett. 82, 2957-2959 (2003).
    [CrossRef]
  5. M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, "Nanophotonic Computing Based on Optical Near-Field Interactions between Quantum Dots," IEICE Trans. Electron. E 88-C, 1817-1823 (2005).
    [CrossRef]
  6. 6. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 1-4 (2003).
    [CrossRef]
  7. T. Yatsui, G.-C. Yi, and M. Ohtsu, "Integration and evaluation of nanophotonic device," in Progress in Nano-Electro-Optics V, M. Ohtsu ed. (Springer, Berlin, 2006), 63-107.
  8. T. Yatsui, S. Takubo, J. Lim, W. Nomura, M. Kourogi, and M. Ohtsu, "Regulating the size and position of deposited Zn nanoparticles by optical near-field desorption using size-dependent resonance," Appl. Phys. Lett. 83, 1716-1718 (2003).
    [CrossRef]
  9. H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, "Nonadiabatic photochemical reaction and application to photolithography," J. Luminescence 122-123, 230-233 (2007).
    [CrossRef]
  10. B. Skoric, S. Maubach, T. Kevenaar, and P. Tuyls, "Information-theoretic analysis of capacitive physical unclonable functions," J. Appl. Phys. 100, 024902 1-11 (2006).
  11. T. Yatsui, W. Nomura, and M. Ohtsu, "Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption," Nano. Lett. 5, 2548- 2551 (2005).
    [CrossRef] [PubMed]
  12. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
    [CrossRef] [PubMed]
  13. T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, "Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording," J. Appl. Phys. 95, 3901-3906 (2004).
    [CrossRef]
  14. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
    [CrossRef]
  15. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 1-4 (2002).
    [CrossRef]
  16. E. Wolf and M. Nieto-Vesperinas, "Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences," J. Opt. Soc. Am. A. 2, 886-890 (1985).
    [CrossRef]
  17. T. Inoue and H. Hori, "Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode," in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer Verlag, 2005), 127-199.
  18. M. Naruse, T. Inoue, and H. Hori, "Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum," Jpn. J. Appl. Phys.in press.
  19. W. I. Park, G.-C Yi, M. Kim, and S. J. Pennycook, "ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy," Adv. Mater. 14, 1841-1843 (2002).
    [CrossRef]
  20. T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoto, M. Kourogi, and M. Ohtsu, "Fabrication of nanometric single zinc and zinc oxide dots by the selective photodissociation of adsorption-phase diethylzinc using a nonresonant optical near field," Appl. Phys. Lett. 81, 3651-3653 (2002).
    [CrossRef]
  21. Y. Kuniya, Y. Deguchi, and M. Ichida, "Physicochemical properties of dimethylzinc, dimethylcadmium and diethylzinc," Appl. Org. Chem. 5, 337-348 (1991).
    [CrossRef]

2007 (1)

H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, "Nonadiabatic photochemical reaction and application to photolithography," J. Luminescence 122-123, 230-233 (2007).
[CrossRef]

2005 (3)

T. Yatsui, W. Nomura, and M. Ohtsu, "Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption," Nano. Lett. 5, 2548- 2551 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, "Nanophotonic Computing Based on Optical Near-Field Interactions between Quantum Dots," IEICE Trans. Electron. E 88-C, 1817-1823 (2005).
[CrossRef]

2004 (2)

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, "Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording," J. Appl. Phys. 95, 3901-3906 (2004).
[CrossRef]

S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004).
[CrossRef] [PubMed]

2003 (3)

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Demonstration of a nanophotonic switching operation by optical near-field energy transfer," Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

6. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 1-4 (2003).
[CrossRef]

T. Yatsui, S. Takubo, J. Lim, W. Nomura, M. Kourogi, and M. Ohtsu, "Regulating the size and position of deposited Zn nanoparticles by optical near-field desorption using size-dependent resonance," Appl. Phys. Lett. 83, 1716-1718 (2003).
[CrossRef]

2002 (3)

W. I. Park, G.-C Yi, M. Kim, and S. J. Pennycook, "ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy," Adv. Mater. 14, 1841-1843 (2002).
[CrossRef]

T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoto, M. Kourogi, and M. Ohtsu, "Fabrication of nanometric single zinc and zinc oxide dots by the selective photodissociation of adsorption-phase diethylzinc using a nonresonant optical near field," Appl. Phys. Lett. 81, 3651-3653 (2002).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

2001 (1)

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

2000 (1)

1991 (1)

Y. Kuniya, Y. Deguchi, and M. Ichida, "Physicochemical properties of dimethylzinc, dimethylcadmium and diethylzinc," Appl. Org. Chem. 5, 337-348 (1991).
[CrossRef]

1985 (1)

E. Wolf and M. Nieto-Vesperinas, "Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences," J. Opt. Soc. Am. A. 2, 886-890 (1985).
[CrossRef]

Adv. Mater. (1)

W. I. Park, G.-C Yi, M. Kim, and S. J. Pennycook, "ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy," Adv. Mater. 14, 1841-1843 (2002).
[CrossRef]

Appl. Org. Chem. (1)

Y. Kuniya, Y. Deguchi, and M. Ichida, "Physicochemical properties of dimethylzinc, dimethylcadmium and diethylzinc," Appl. Org. Chem. 5, 337-348 (1991).
[CrossRef]

Appl. Phys. Lett. (4)

T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoto, M. Kourogi, and M. Ohtsu, "Fabrication of nanometric single zinc and zinc oxide dots by the selective photodissociation of adsorption-phase diethylzinc using a nonresonant optical near field," Appl. Phys. Lett. 81, 3651-3653 (2002).
[CrossRef]

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Demonstration of a nanophotonic switching operation by optical near-field energy transfer," Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

T. Yatsui, S. Takubo, J. Lim, W. Nomura, M. Kourogi, and M. Ohtsu, "Regulating the size and position of deposited Zn nanoparticles by optical near-field desorption using size-dependent resonance," Appl. Phys. Lett. 83, 1716-1718 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

IEICE Trans. Electron. E (1)

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, "Nanophotonic Computing Based on Optical Near-Field Interactions between Quantum Dots," IEICE Trans. Electron. E 88-C, 1817-1823 (2005).
[CrossRef]

J. Appl. Phys. (1)

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, "Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording," J. Appl. Phys. 95, 3901-3906 (2004).
[CrossRef]

J. Luminescence (1)

H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, "Nonadiabatic photochemical reaction and application to photolithography," J. Luminescence 122-123, 230-233 (2007).
[CrossRef]

J. Opt. Soc. Am. A. (1)

E. Wolf and M. Nieto-Vesperinas, "Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences," J. Opt. Soc. Am. A. 2, 886-890 (1985).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Naruse, T. Inoue, and H. Hori, "Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum," Jpn. J. Appl. Phys.in press.

Nano. Lett. (1)

T. Yatsui, W. Nomura, and M. Ohtsu, "Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption," Nano. Lett. 5, 2548- 2551 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

6. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 1-4 (2003).
[CrossRef]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Other (4)

B. Skoric, S. Maubach, T. Kevenaar, and P. Tuyls, "Information-theoretic analysis of capacitive physical unclonable functions," J. Appl. Phys. 100, 024902 1-11 (2006).

T. Yatsui, G.-C. Yi, and M. Ohtsu, "Integration and evaluation of nanophotonic device," in Progress in Nano-Electro-Optics V, M. Ohtsu ed. (Springer, Berlin, 2006), 63-107.

T. Inoue and H. Hori, "Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode," in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer Verlag, 2005), 127-199.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 1-4 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Generation of smaller-scale structures from larger-scale ones via optical near-field interactions.

Fig. 2.
Fig. 2.

(a). Physical model based on dipoles ( d (1) and d (2)) and the points of interest denoted by X and Z. The size of the larger-scale structure is represented by L. Angular spectrum evaluated at positions (b) closer to the structure (Z=1/32), and (c) relatively far from the structure (Z=1/4). The dimensions are represented in units of wavelength. (d) Integrated angular spectrum in the spatial frequency interval of 1≤ s ‖≤100 and1≤ s ‖≤50 at Z=1/32. (e) Electric field intensity profiles at Z=1/32 (solid curve) and Z=1/4 (dashed curve) calculated through rigorous theoretical modeling.

Fig. 3.
Fig. 3.

(a, b) SEM images of ZnO nanoneedle fabricated through metal-organic vapor phase epitaxy (MOVPE). (c, d) SEM images of the same ZnO nanoneedles after photo-induced MOVPE.

Fig. 4.
Fig. 4.

Analysis of scales in the structures fabricated without light and with light. (a) Images of the structures fabricated (a) without light and (b) with light, which are obtained from Fig. 3(a) and (c), respectively. (c) The horizontal extent of the structure used for analysis of the scales denoted by S. (d) Incidence of the scales in (a) and (b).

Fig. 5.
Fig. 5.

Geometrical arrangement of a dipole and a point of interest.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E z ( r ) = ( i K 3 4 π ε 0 ) 1 d s s s z f z ( s , d ( 1 ) , , d ( N ) )
f z ( s , d ( 1 ) , , d ( N ) ) = k = 1 N { d ( k ) s s 2 1 sin θ ( k ) cos ( ϕ ( k ) φ ( k ) ) J 1 ( K r ( k ) s ) exp ( K z ( k ) s 2 1 )
+ d ( k ) s 2 cos θ ( k ) J 0 ( K r ( k ) s ) exp ( K z ( k ) s 2 1 ) } .

Metrics