Abstract

We investigate the photonic properties of one dimensional photonic crystals realized on Silicon On Insulator channel slot-waveguide to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. The optimal geometry has been further used to realize a coupled resonator optical waveguide (CROW). A first optimization of these CROW devices shows a group velocity of more than c/10 at 1.55 µm. Full three dimensional calculations based on the planar wave expansion method have been used to compute the band diagram while full three dimensional calculations based on finite difference time domain methods have been used to study light propagation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. Almeida and Q. Xu and C. A. Barrios and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  2. Q. Xu and V. R. Almeida and R. R. Panepucci and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004).
    [CrossRef] [PubMed]
  3. J. T. Robinson, C. Manolatou, L. Chen and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 1439011-1439014 (2005).
    [CrossRef]
  4. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen and J. D. Joannopoulos, "Photonic crystals slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).
    [CrossRef]
  5. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati and I. Carusotto, "Photon energy lifter," Opt. Express 14, 7270-7278 (2006).
    [CrossRef] [PubMed]
  6. A. Melloni, F. Morichetti and M. Martinelli, "Optical Slow wave structures," Opt. Photon. News 14, 44-48 (2003).
    [CrossRef]
  7. J. Scheuer, G.T. Paloczi, J.K.S. Poon and A. Yariv, "Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light," Opt. Photon. News 16, 36-40 (2005).
    [CrossRef]
  8. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  9. CrysalWave FDTD software, ver. 2.1 by PhotonDesign Ltd.
  10. M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724-9729 (2003).
    [CrossRef]
  11. P. Lalanne and J.P. Hugonin, "Bloch-wave engineering of high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003).
    [CrossRef]
  12. P. Lalanne, M. Mias and J.P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004).
    [CrossRef] [PubMed]
  13. G. Steven, S. Johnson, A. Fan, J.D. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
    [CrossRef]
  14. F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini and E. Di Fabrizio, "Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides," PNFA 4, 41-46 (2006).
  15. Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  16. Y-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo and Q. M. Zhang, "Finite-size effect on one-dimensional coupled resonator optical waveguides," Phys. Rev. E 69, 0566041-0566046 (2004).
    [CrossRef]
  17. M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103-241105 (2006).
    [CrossRef]
  18. F. Y. Mehmet and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 920839011-0839014 (2004).
  19. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 0739031-0739034 (2005).
    [CrossRef]

2006 (3)

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini and E. Di Fabrizio, "Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides," PNFA 4, 41-46 (2006).

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103-241105 (2006).
[CrossRef]

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati and I. Carusotto, "Photon energy lifter," Opt. Express 14, 7270-7278 (2006).
[CrossRef] [PubMed]

2005 (3)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 0739031-0739034 (2005).
[CrossRef]

J. T. Robinson, C. Manolatou, L. Chen and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 1439011-1439014 (2005).
[CrossRef]

J. Scheuer, G.T. Paloczi, J.K.S. Poon and A. Yariv, "Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light," Opt. Photon. News 16, 36-40 (2005).
[CrossRef]

2004 (5)

2003 (4)

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724-9729 (2003).
[CrossRef]

P. Lalanne and J.P. Hugonin, "Bloch-wave engineering of high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003).
[CrossRef]

A. Melloni, F. Morichetti and M. Martinelli, "Optical Slow wave structures," Opt. Photon. News 14, 44-48 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

G. Steven, S. Johnson, A. Fan, J.D. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

G. Steven, S. Johnson, A. Fan, J.D. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103-241105 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Lalanne and J.P. Hugonin, "Bloch-wave engineering of high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003).
[CrossRef]

J. Appl. Phys. (1)

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724-9729 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Photon. News (2)

A. Melloni, F. Morichetti and M. Martinelli, "Optical Slow wave structures," Opt. Photon. News 14, 44-48 (2003).
[CrossRef]

J. Scheuer, G.T. Paloczi, J.K.S. Poon and A. Yariv, "Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light," Opt. Photon. News 16, 36-40 (2005).
[CrossRef]

Phys. Rev. E (1)

Y-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo and Q. M. Zhang, "Finite-size effect on one-dimensional coupled resonator optical waveguides," Phys. Rev. E 69, 0566041-0566046 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

J. T. Robinson, C. Manolatou, L. Chen and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 1439011-1439014 (2005).
[CrossRef]

F. Y. Mehmet and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 920839011-0839014 (2004).

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 0739031-0739034 (2005).
[CrossRef]

PNFA (1)

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini and E. Di Fabrizio, "Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides," PNFA 4, 41-46 (2006).

Other (1)

CrysalWave FDTD software, ver. 2.1 by PhotonDesign Ltd.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

a) Basic geometry and parameter definition of a rectangular slot waveguide. In the article a SOI structure is assumed, with an air top cladding (n C =1) and a buffer layer of silica (n buffer =1.45), not shown in Fig. b) Contour plot and spatial profiles of E x intensity mode. In this Fig. a slot waveguide core of air is assumed.

Fig. 2.
Fig. 2.

a) Projected band diagram (left) and transmission spectra of a silicon wire patterned with air slits. Parameters of the silicon wires are: 300 nm thickness, 500 nm width; the parameters of the photonic crystals are period Λ=450 nm, air slit width of 100 nm. In the band diagram the dashed region defines the region above the light-line. The dispersion and transmission spectrum are calculated for quasi-TE mode propagating along the wire axis (z-direction). (b) Gap map for the same geometry a as a function of the filling factor (defined as the ratio of the air slit width to the period). The inset shows the geometry of the one-dimensional photonic crystal. White circles indicate gap-map for quasi-TE polarization, whereas black circles define the gap region for quasi-TM mode. The dashed line defines the region above the light-line. The inset in lower left corner is a sketch of the top view of the simulated waveguide.

Fig. 3.
Fig. 3.

Gap maps for a) full air slit, b) partial air slit, c) external comb, d) internal filled comb geometries. The parameters of the structure are Λ=450 nm, h=300 nm, W S =140 nm and W H =180 nm. The inset of each Fig. shows a 3D sketch and the top view of each geometry.

Fig. 4.
Fig. 4.

a) Geometry of 1D photonic crystals carved in a silicon wire. b) Geometry of the CROW device formed by using the internal comb geometry on a slot waveguide. Zoomed area shows how the tapering applied to the two air slits near the defect site. Spatial shifts of the two air slits are indicates. c) FDTD transmission of CROW structure realized by a one dimensional photonic crystal formed by air holes in a silicon wire. d) FDTD transmission of CROW realized by the internal comb geometry on a slot waveguide.

Metrics