Abstract

We investigate the photonic properties of one dimensional photonic crystals realized on Silicon On Insulator channel slot-waveguide to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. The optimal geometry has been further used to realize a coupled resonator optical waveguide (CROW). A first optimization of these CROW devices shows a group velocity of more than c/10 at 1.55 µm. Full three dimensional calculations based on the planar wave expansion method have been used to compute the band diagram while full three dimensional calculations based on finite difference time domain methods have been used to study light propagation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [Crossref] [PubMed]
  2. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [Crossref] [PubMed]
  3. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities,” Phys. Rev. Lett. 95, 1439011–1439014 (2005).
    [Crossref]
  4. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic crystals slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
    [Crossref]
  5. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
    [Crossref] [PubMed]
  6. A. Melloni, F. Morichetti, and M. Martinelli, “Optical Slow wave structures,” Opt. Photon. News 14, 44–48 (2003).
    [Crossref]
  7. J. Scheuer, G.T. Paloczi, J.K.S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light,” Opt. Photon. News 16, 36–40 (2005).
    [Crossref]
  8. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  9. CrysalWave FDTD software, ver. 2.1 by PhotonDesign Ltd.
  10. M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93, 9724–9729 (2003).
    [Crossref]
  11. P. Lalanne and J.P. Hugonin, “Bloch-wave engineering of high-Q small-V microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003).
    [Crossref]
  12. P. Lalanne, M. Mias, and J.P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
    [Crossref] [PubMed]
  13. G. Steven, S. Johnson, A. Fan, J.D. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
    [Crossref]
  14. F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).
  15. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  16. Yong-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled resonator optical waveguides,” Phys. Rev. E 69, 0566041–0566046 (2004).
    [Crossref]
  17. M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
    [Crossref]
  18. F. Y. Mehmet and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 920839011–0839014 (2004).
  19. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
    [Crossref]

2006 (3)

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
[Crossref] [PubMed]

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

2005 (3)

J. Scheuer, G.T. Paloczi, J.K.S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light,” Opt. Photon. News 16, 36–40 (2005).
[Crossref]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities,” Phys. Rev. Lett. 95, 1439011–1439014 (2005).
[Crossref]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

2004 (5)

2003 (4)

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93, 9724–9729 (2003).
[Crossref]

P. Lalanne and J.P. Hugonin, “Bloch-wave engineering of high-Q small-V microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

A. Melloni, F. Morichetti, and M. Martinelli, “Optical Slow wave structures,” Opt. Photon. News 14, 44–48 (2003).
[Crossref]

2002 (1)

2001 (2)

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

G. Steven, S. Johnson, A. Fan, J.D. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Almeida, V.

Almeida, V. R.

Andreani, L.

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Barrios, C. A.

Bertolotti, J.

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

Bonetti, G.

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93, 9724–9729 (2003).
[Crossref]

Cabrini, S.

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

Carusotto, I.

Chen, L.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities,” Phys. Rev. Lett. 95, 1439011–1439014 (2005).
[Crossref]

Daldosso, N.

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

Di Fabrizio, E.

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

Ding, J.

Yong-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled resonator optical waveguides,” Phys. Rev. E 69, 0566041–0566046 (2004).
[Crossref]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

Fan, A.

G. Steven, S. Johnson, A. Fan, J.D. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

Fan, S.

Gaburro, Z.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
[Crossref] [PubMed]

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93, 9724–9729 (2003).
[Crossref]

Galli, M.

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

Ghulinyan, M.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
[Crossref] [PubMed]

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93, 9724–9729 (2003).
[Crossref]

Ghulynian, M.

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

Gottardo, S.

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

Hugonin, J.P.

Ibanescu, M.

Ippen, E.

Jeong, D.-Y.

Yong-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled resonator optical waveguides,” Phys. Rev. E 69, 0566041–0566046 (2004).
[Crossref]

Joannopoulos, J. D.

Johnson, S.

G. Steven, S. Johnson, A. Fan, J.D. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

Johnson, S. G.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

Khoo, I. C.

Yong-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled resonator optical waveguides,” Phys. Rev. E 69, 0566041–0566046 (2004).
[Crossref]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

Lalanne, P.

Lipson, M.

Lui, A.

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities,” Phys. Rev. Lett. 95, 1439011–1439014 (2005).
[Crossref]

Marabelli, F.

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical Slow wave structures,” Opt. Photon. News 14, 44–48 (2003).
[Crossref]

Mehmet, F. Y.

F. Y. Mehmet and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 920839011–0839014 (2004).

Mekis, J.D.

G. Steven, S. Johnson, A. Fan, J.D. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical Slow wave structures,” Opt. Photon. News 14, 44–48 (2003).
[Crossref]

Mias, M.

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical Slow wave structures,” Opt. Photon. News 14, 44–48 (2003).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Oton, C.J.

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93, 9724–9729 (2003).
[Crossref]

Paloczi, G.T.

J. Scheuer, G.T. Paloczi, J.K.S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light,” Opt. Photon. News 16, 36–40 (2005).
[Crossref]

Panepucci, R. R.

Pavesi, L.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
[Crossref] [PubMed]

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93, 9724–9729 (2003).
[Crossref]

Poon, J.K.S.

J. Scheuer, G.T. Paloczi, J.K.S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light,” Opt. Photon. News 16, 36–40 (2005).
[Crossref]

Pucker, G.

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

Recati, A.

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
[Crossref] [PubMed]

Riboli, F.

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter,” Opt. Express 14, 7270–7278 (2006).
[Crossref] [PubMed]

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

Robinson, J. T.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities,” Phys. Rev. Lett. 95, 1439011–1439014 (2005).
[Crossref]

Scheuer, J.

J. Scheuer, G.T. Paloczi, J.K.S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light,” Opt. Photon. News 16, 36–40 (2005).
[Crossref]

Soljacic, M.

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Steven, G.

G. Steven, S. Johnson, A. Fan, J.D. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

Toninelli, C.

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

vanHulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

Wiersma, D.S.

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

Xu, Q.

Yariv, A.

J. Scheuer, G.T. Paloczi, J.K.S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light,” Opt. Photon. News 16, 36–40 (2005).
[Crossref]

Ye, Yong-H.

Yong-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled resonator optical waveguides,” Phys. Rev. E 69, 0566041–0566046 (2004).
[Crossref]

Zhang, Q. M.

Yong-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled resonator optical waveguides,” Phys. Rev. E 69, 0566041–0566046 (2004).
[Crossref]

Appl. Phys. Lett. (2)

G. Steven, S. Johnson, A. Fan, J.D. Mekis, and J. D. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001).
[Crossref]

M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi, and L. Andreani, “Wide-band transmission of non-distorted slow waves in 1D optical superlattices,” Appl. Phys. Lett. 88, 241103–241105 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Lalanne and J.P. Hugonin, “Bloch-wave engineering of high-Q small-V microcavities,” IEEE J. Quantum Electron. 39, 1430–1438 (2003).
[Crossref]

J. Appl. Phys. (1)

M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93, 9724–9729 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Photon. News (2)

A. Melloni, F. Morichetti, and M. Martinelli, “Optical Slow wave structures,” Opt. Photon. News 14, 44–48 (2003).
[Crossref]

J. Scheuer, G.T. Paloczi, J.K.S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light,” Opt. Photon. News 16, 36–40 (2005).
[Crossref]

Phys. Rev. E (1)

Yong-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled resonator optical waveguides,” Phys. Rev. E 69, 0566041–0566046 (2004).
[Crossref]

Phys. Rev. Lett. (3)

F. Y. Mehmet and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 920839011–0839014 (2004).

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, “Real space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 0739031–0739034 (2005).
[Crossref]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities,” Phys. Rev. Lett. 95, 1439011–1439014 (2005).
[Crossref]

PNFA (1)

F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides,” PNFA 4, 41–46 (2006).

Other (1)

CrysalWave FDTD software, ver. 2.1 by PhotonDesign Ltd.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

a) Basic geometry and parameter definition of a rectangular slot waveguide. In the article a SOI structure is assumed, with an air top cladding (n C =1) and a buffer layer of silica (n buffer =1.45), not shown in Fig. b) Contour plot and spatial profiles of E x intensity mode. In this Fig. a slot waveguide core of air is assumed.

Fig. 2.
Fig. 2.

a) Projected band diagram (left) and transmission spectra of a silicon wire patterned with air slits. Parameters of the silicon wires are: 300 nm thickness, 500 nm width; the parameters of the photonic crystals are period Λ=450 nm, air slit width of 100 nm. In the band diagram the dashed region defines the region above the light-line. The dispersion and transmission spectrum are calculated for quasi-TE mode propagating along the wire axis (z-direction). (b) Gap map for the same geometry a as a function of the filling factor (defined as the ratio of the air slit width to the period). The inset shows the geometry of the one-dimensional photonic crystal. White circles indicate gap-map for quasi-TE polarization, whereas black circles define the gap region for quasi-TM mode. The dashed line defines the region above the light-line. The inset in lower left corner is a sketch of the top view of the simulated waveguide.

Fig. 3.
Fig. 3.

Gap maps for a) full air slit, b) partial air slit, c) external comb, d) internal filled comb geometries. The parameters of the structure are Λ=450 nm, h=300 nm, W S =140 nm and W H =180 nm. The inset of each Fig. shows a 3D sketch and the top view of each geometry.

Fig. 4.
Fig. 4.

a) Geometry of 1D photonic crystals carved in a silicon wire. b) Geometry of the CROW device formed by using the internal comb geometry on a slot waveguide. Zoomed area shows how the tapering applied to the two air slits near the defect site. Spatial shifts of the two air slits are indicates. c) FDTD transmission of CROW structure realized by a one dimensional photonic crystal formed by air holes in a silicon wire. d) FDTD transmission of CROW realized by the internal comb geometry on a slot waveguide.

Metrics