Abstract

A novel on-line beam diagnostic method for continuous-wave high energy laser (HEL) is presented. The system based on this method is mainly consisted of a scanning circular reflector and a photodetector array disposed spatially. Laser beam passes through the system except a little part of whole beam is sampled and reflected into the detector array by the circular reflector. Through the arithmetic of spatial mapping and image restoration with the output signal of detector array, the spatial-temporal distribution parameters of the laser beam are obtained. The HEL beam of several hundred millimeters in diameter can be on-line measured with spatial resolution of 2 mm and temporal resolution of 30~50ms.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Roundy, “Instrumentation for laser beam profile measurement,” Proc. SPIE 1625, 318–329 (1992).
    [Crossref]
  2. C. Wang, J. Zhao, and Y. Yuan, “The diagnosis on the spot and drift of CW-COIL laser beam,” Proc. SPIE 2869, 289–293, (1997).
    [Crossref]
  3. A. R. Marrujo, “High energy laser beam diagostics,” Proc. SPIE 1871, 256–276, (1993).
  4. R. Kramer, H. Schwede, and V. Brandl, “Laser beam diagnostics according to ISO and their impact on practical application,” Proc. SPIE 59622H, 1–8 (2005).
    [Crossref]
  5. T. Yagi, Y. Matsumi, and K. Ohta, “A diagnostic system for an excimer laser beam,” Proc. SPIE 1031, 378:384, (1988).
  6. D. Martinen, I. Decker, and H. Wohlfahrt, “Fast spatial-resolved diagnostics of high-power CO2 laser beams,” Proc. SPIE 2870, 225–232 (1996).
    [Crossref]
  7. J. V. Gilse, S. Koczera, and D. Greby, “Direct laser beam diagnostics,” Proc. SPIE 1414, 45–54, (1991).
    [Crossref]
  8. G. Rabczuk, P. Kukiello, and R. Zaremba, “Experimental analysis of industrial 1kW CO2 laser beam properties,” Proc. SPIE 3571, 102–106, (1999).
    [Crossref]

2005 (1)

R. Kramer, H. Schwede, and V. Brandl, “Laser beam diagnostics according to ISO and their impact on practical application,” Proc. SPIE 59622H, 1–8 (2005).
[Crossref]

1999 (1)

G. Rabczuk, P. Kukiello, and R. Zaremba, “Experimental analysis of industrial 1kW CO2 laser beam properties,” Proc. SPIE 3571, 102–106, (1999).
[Crossref]

1997 (1)

C. Wang, J. Zhao, and Y. Yuan, “The diagnosis on the spot and drift of CW-COIL laser beam,” Proc. SPIE 2869, 289–293, (1997).
[Crossref]

1996 (1)

D. Martinen, I. Decker, and H. Wohlfahrt, “Fast spatial-resolved diagnostics of high-power CO2 laser beams,” Proc. SPIE 2870, 225–232 (1996).
[Crossref]

1993 (1)

A. R. Marrujo, “High energy laser beam diagostics,” Proc. SPIE 1871, 256–276, (1993).

1992 (1)

C. B. Roundy, “Instrumentation for laser beam profile measurement,” Proc. SPIE 1625, 318–329 (1992).
[Crossref]

1991 (1)

J. V. Gilse, S. Koczera, and D. Greby, “Direct laser beam diagnostics,” Proc. SPIE 1414, 45–54, (1991).
[Crossref]

1988 (1)

T. Yagi, Y. Matsumi, and K. Ohta, “A diagnostic system for an excimer laser beam,” Proc. SPIE 1031, 378:384, (1988).

Brandl, V.

R. Kramer, H. Schwede, and V. Brandl, “Laser beam diagnostics according to ISO and their impact on practical application,” Proc. SPIE 59622H, 1–8 (2005).
[Crossref]

Decker, I.

D. Martinen, I. Decker, and H. Wohlfahrt, “Fast spatial-resolved diagnostics of high-power CO2 laser beams,” Proc. SPIE 2870, 225–232 (1996).
[Crossref]

Gilse, J. V.

J. V. Gilse, S. Koczera, and D. Greby, “Direct laser beam diagnostics,” Proc. SPIE 1414, 45–54, (1991).
[Crossref]

Greby, D.

J. V. Gilse, S. Koczera, and D. Greby, “Direct laser beam diagnostics,” Proc. SPIE 1414, 45–54, (1991).
[Crossref]

Koczera, S.

J. V. Gilse, S. Koczera, and D. Greby, “Direct laser beam diagnostics,” Proc. SPIE 1414, 45–54, (1991).
[Crossref]

Kramer, R.

R. Kramer, H. Schwede, and V. Brandl, “Laser beam diagnostics according to ISO and their impact on practical application,” Proc. SPIE 59622H, 1–8 (2005).
[Crossref]

Kukiello, P.

G. Rabczuk, P. Kukiello, and R. Zaremba, “Experimental analysis of industrial 1kW CO2 laser beam properties,” Proc. SPIE 3571, 102–106, (1999).
[Crossref]

Marrujo, A. R.

A. R. Marrujo, “High energy laser beam diagostics,” Proc. SPIE 1871, 256–276, (1993).

Martinen, D.

D. Martinen, I. Decker, and H. Wohlfahrt, “Fast spatial-resolved diagnostics of high-power CO2 laser beams,” Proc. SPIE 2870, 225–232 (1996).
[Crossref]

Matsumi, Y.

T. Yagi, Y. Matsumi, and K. Ohta, “A diagnostic system for an excimer laser beam,” Proc. SPIE 1031, 378:384, (1988).

Ohta, K.

T. Yagi, Y. Matsumi, and K. Ohta, “A diagnostic system for an excimer laser beam,” Proc. SPIE 1031, 378:384, (1988).

Rabczuk, G.

G. Rabczuk, P. Kukiello, and R. Zaremba, “Experimental analysis of industrial 1kW CO2 laser beam properties,” Proc. SPIE 3571, 102–106, (1999).
[Crossref]

Roundy, C. B.

C. B. Roundy, “Instrumentation for laser beam profile measurement,” Proc. SPIE 1625, 318–329 (1992).
[Crossref]

Schwede, H.

R. Kramer, H. Schwede, and V. Brandl, “Laser beam diagnostics according to ISO and their impact on practical application,” Proc. SPIE 59622H, 1–8 (2005).
[Crossref]

Wang, C.

C. Wang, J. Zhao, and Y. Yuan, “The diagnosis on the spot and drift of CW-COIL laser beam,” Proc. SPIE 2869, 289–293, (1997).
[Crossref]

Wohlfahrt, H.

D. Martinen, I. Decker, and H. Wohlfahrt, “Fast spatial-resolved diagnostics of high-power CO2 laser beams,” Proc. SPIE 2870, 225–232 (1996).
[Crossref]

Yagi, T.

T. Yagi, Y. Matsumi, and K. Ohta, “A diagnostic system for an excimer laser beam,” Proc. SPIE 1031, 378:384, (1988).

Yuan, Y.

C. Wang, J. Zhao, and Y. Yuan, “The diagnosis on the spot and drift of CW-COIL laser beam,” Proc. SPIE 2869, 289–293, (1997).
[Crossref]

Zaremba, R.

G. Rabczuk, P. Kukiello, and R. Zaremba, “Experimental analysis of industrial 1kW CO2 laser beam properties,” Proc. SPIE 3571, 102–106, (1999).
[Crossref]

Zhao, J.

C. Wang, J. Zhao, and Y. Yuan, “The diagnosis on the spot and drift of CW-COIL laser beam,” Proc. SPIE 2869, 289–293, (1997).
[Crossref]

Proc. SPIE (8)

C. B. Roundy, “Instrumentation for laser beam profile measurement,” Proc. SPIE 1625, 318–329 (1992).
[Crossref]

C. Wang, J. Zhao, and Y. Yuan, “The diagnosis on the spot and drift of CW-COIL laser beam,” Proc. SPIE 2869, 289–293, (1997).
[Crossref]

A. R. Marrujo, “High energy laser beam diagostics,” Proc. SPIE 1871, 256–276, (1993).

R. Kramer, H. Schwede, and V. Brandl, “Laser beam diagnostics according to ISO and their impact on practical application,” Proc. SPIE 59622H, 1–8 (2005).
[Crossref]

T. Yagi, Y. Matsumi, and K. Ohta, “A diagnostic system for an excimer laser beam,” Proc. SPIE 1031, 378:384, (1988).

D. Martinen, I. Decker, and H. Wohlfahrt, “Fast spatial-resolved diagnostics of high-power CO2 laser beams,” Proc. SPIE 2870, 225–232 (1996).
[Crossref]

J. V. Gilse, S. Koczera, and D. Greby, “Direct laser beam diagnostics,” Proc. SPIE 1414, 45–54, (1991).
[Crossref]

G. Rabczuk, P. Kukiello, and R. Zaremba, “Experimental analysis of industrial 1kW CO2 laser beam properties,” Proc. SPIE 3571, 102–106, (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the sampler.

Fig. 2.
Fig. 2.

Arithmetic of spatial mapping

Fig. 3.
Fig. 3.

Simulation of pixel distribution in image

Fig. 4.
Fig. 4.

Process of image restoration and display

Fig. 5.
Fig. 5.

Comparison of experimental setup and measure result.

Fig. 6.
Fig. 6.

A series of laser beam images measured by the system.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ = 2 π i n
sin α = R · sin ( π θ ) R 2 + r 2 2 R · r · cos ( π θ )
α = { arcsin ( R · sin ( π θ ) R 2 + r 2 2 R · r · cos ( π θ ) ) cos θ > r R π arcsin ( R · sin ( π θ ) R 2 + r 2 2 R · r · cos ( π θ ) ) cos θ r R
ρ = OC = 2 r sin ( α 2 )
β = π γ = π ( π a ) 2 = ( π + α ) 2
F ( ρ , β ) = f [ ρ ( θ + θ ) , β ( θ + θ ) ]

Metrics