Abstract

We present a time-resolved optical technique to measure electron spin dynamics with GHz dynamical bandwidth, transform-limited spectral selectivity, and phase-sensitive (lock-in) detection. Use of a continuous-wave (CW) laser and fast optical bridge enables greatly improved signal-to-noise characteristics compared to traditional optical sampling (pump-probe) techniques. We demonstrate the technique with a measurement of GHz-spin precession in n-GaAs. This approach may be applicable to other physical systems where stroboscopic techniques cannot be used because of either noise or spectral limitations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, "Spintronics: A spin-based electronics vision for the future," Science 294, 1488-1495 (2001).
    [CrossRef] [PubMed]
  2. S. A. Crooker and D. L. Smith, "Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields," Phys. Rev. Lett. 94, 236601-236604 (2005).
    [CrossRef] [PubMed]
  3. R. J. Epstein, D. T. Fuchs, W. V. Schoenfeld, P. M. Petroff, and D. D. Awschalom, "Hanle effect measurements of spin lifetimes in InAs self-assembled quantum dots," Appl. Phys. Lett. 78, 733-735 (2001).
    [CrossRef]
  4. X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrom, and P. A. Crowell, "Electrical detection of spin transport in lateral ferromagnet-semiconductor devices," Nat. Phys. 3, 197-202 (2007).
    [CrossRef]
  5. M. Oestreich, M. Romer, R. J. Haug, and D. Hagele, "Spin Noise Spectroscopy in GaAs," Phys. Rev. Lett. 95, 216603-216604 (2005).
    [CrossRef] [PubMed]
  6. J. M. Kikkawa and D. D. Awschalom, "Resonant Spin Amplification in n-Type GaAs," Phys. Rev. Lett. 80, 4313-4316 (1998).
    [CrossRef]
  7. F. T. Charnock, R. Lopusnik, and T. J. Silva, "Pump--probe Faraday rotation magnetometer using two diode lasers," Rev. Sci. Instrum. 76, 056105-056105-3 (2005).
    [CrossRef]
  8. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, "Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots," Phys. Rev. Lett. 76, 3005-3008 (1996).
    [CrossRef] [PubMed]
  9. D. Magde, E. Elson, and W. W. Webb, "Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
    [CrossRef]
  10. R. J. Kneisler, F. E. Lytle, G. J. Fiechtner, Y. Jiang, G. B. King, and N. M. Laurendeau, "Asynchronous optical sampling: a new combustion diagnostic for potential use in turbulent, high-pressure flames," Opt. Lett. 14, 260-262 (1989).
    [CrossRef] [PubMed]
  11. J. J. Baumberg, S. A. Crooker, D. D. Awschalom, N. Samarth, H. Luo, and J. K. Furdyna, "Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures," Phys. Rev. B 50, 7689-7700 (1994).
    [CrossRef]

2007 (1)

X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrom, and P. A. Crowell, "Electrical detection of spin transport in lateral ferromagnet-semiconductor devices," Nat. Phys. 3, 197-202 (2007).
[CrossRef]

2005 (3)

M. Oestreich, M. Romer, R. J. Haug, and D. Hagele, "Spin Noise Spectroscopy in GaAs," Phys. Rev. Lett. 95, 216603-216604 (2005).
[CrossRef] [PubMed]

S. A. Crooker and D. L. Smith, "Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields," Phys. Rev. Lett. 94, 236601-236604 (2005).
[CrossRef] [PubMed]

F. T. Charnock, R. Lopusnik, and T. J. Silva, "Pump--probe Faraday rotation magnetometer using two diode lasers," Rev. Sci. Instrum. 76, 056105-056105-3 (2005).
[CrossRef]

2001 (2)

R. J. Epstein, D. T. Fuchs, W. V. Schoenfeld, P. M. Petroff, and D. D. Awschalom, "Hanle effect measurements of spin lifetimes in InAs self-assembled quantum dots," Appl. Phys. Lett. 78, 733-735 (2001).
[CrossRef]

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, "Spintronics: A spin-based electronics vision for the future," Science 294, 1488-1495 (2001).
[CrossRef] [PubMed]

1998 (1)

J. M. Kikkawa and D. D. Awschalom, "Resonant Spin Amplification in n-Type GaAs," Phys. Rev. Lett. 80, 4313-4316 (1998).
[CrossRef]

1996 (1)

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, "Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots," Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

1994 (1)

J. J. Baumberg, S. A. Crooker, D. D. Awschalom, N. Samarth, H. Luo, and J. K. Furdyna, "Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures," Phys. Rev. B 50, 7689-7700 (1994).
[CrossRef]

1989 (1)

1972 (1)

D. Magde, E. Elson, and W. W. Webb, "Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Appl. Phys. Lett. (1)

R. J. Epstein, D. T. Fuchs, W. V. Schoenfeld, P. M. Petroff, and D. D. Awschalom, "Hanle effect measurements of spin lifetimes in InAs self-assembled quantum dots," Appl. Phys. Lett. 78, 733-735 (2001).
[CrossRef]

Nat. Phys. (1)

X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrom, and P. A. Crowell, "Electrical detection of spin transport in lateral ferromagnet-semiconductor devices," Nat. Phys. 3, 197-202 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

J. J. Baumberg, S. A. Crooker, D. D. Awschalom, N. Samarth, H. Luo, and J. K. Furdyna, "Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures," Phys. Rev. B 50, 7689-7700 (1994).
[CrossRef]

Phys. Rev. Lett. (5)

M. Oestreich, M. Romer, R. J. Haug, and D. Hagele, "Spin Noise Spectroscopy in GaAs," Phys. Rev. Lett. 95, 216603-216604 (2005).
[CrossRef] [PubMed]

J. M. Kikkawa and D. D. Awschalom, "Resonant Spin Amplification in n-Type GaAs," Phys. Rev. Lett. 80, 4313-4316 (1998).
[CrossRef]

S. A. Crooker and D. L. Smith, "Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields," Phys. Rev. Lett. 94, 236601-236604 (2005).
[CrossRef] [PubMed]

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, "Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots," Phys. Rev. Lett. 76, 3005-3008 (1996).
[CrossRef] [PubMed]

D. Magde, E. Elson, and W. W. Webb, "Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Rev. Sci. Instrum. (1)

F. T. Charnock, R. Lopusnik, and T. J. Silva, "Pump--probe Faraday rotation magnetometer using two diode lasers," Rev. Sci. Instrum. 76, 056105-056105-3 (2005).
[CrossRef]

Science (1)

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, "Spintronics: A spin-based electronics vision for the future," Science 294, 1488-1495 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulation of noise reduction when comparing a sampling technique (pulsed probe) with a continuous detection one (CW probe): (a) Averaged data for CW and stroboscopic acquisition. Here S 0(t)=exp(-T·t)cos(ω·t). The intrinsic noise is η 0=0.3 and the pulse width is t 0=1. (b) Comparison of SNR for CW and stroboscopic acquisition.

Fig. 2.
Fig. 2.

(Color online) Schematic drawing of the experimental setup for the detection of electron spin coherence in semiconductors. (GLP) - Glan - Laser polarizer; (WP) — quarter wavelength plate; (PEM) — photoelastic modulators; (BS) — beamsplitters; (M) — mirrors; (DSP) - digital signal processor.

Fig. 3.
Fig. 3.

(Color online) Data processing steps: (a) the acquired data is demodulated at the reference frequency f r ; (b) the independently acquired laser pulses are used as a reference for slicing the data waveform into segments equal with the excitation laser period; and (c) the resulting time-resolved Kerr rotation after processing 1.6 ms of acquired data.

Fig. 4.
Fig. 4.

(Color online) (a) Acquired Kerr rotation data for n-GaAs as a function of the delay time (horizontal axis) and external magnetic field (vertical axis); (b) Fast Fourier Transform (FFT) of the data giving the Larmor precession frequency as a function of the magnetic field; (c) Line cuts through the Kerr rotation plot at different magnetic fields (0, 100 and 200 mT); (d) Line cuts through the FFT data showing the resonant frequency for H=0, 100 and 200 mT.

Fig. 5.
Fig. 5.

(Color online) Kerr rotation as a function of magnetic field. Rapid oscillation visible at 1 ns is due to resonant spin amplification. Slow oscillations visible at 2.5 and 5 ns are due to changing precession frequency with field. Curves are offset for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S z ( t ) = A exp ( t T 1 * ) cos ( ω L t )
S z ( t ) = n probe exp ( ( t + n pulse T L ) T 2 ) cos ( ω L t + n pulse T L )

Metrics