Abstract

In a nano-ridge waveguide under oblique illumination, we demonstrated transmission enhancement resulting from a hybrid effect between propagation modes and surface plasmon wave. The measured near-field intensity with 44-degree illumination was 1.6 times higher than that illuminated with normal incident light. Consequently, a wedge-shaped fiber probe was proposed to serve as a compact near-field light source.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  3. E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006).
    [CrossRef]
  4. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts," Opt. Express 14, 6400-6413 (2006).
    [CrossRef] [PubMed]
  5. X. Shi, R. L. Thornton, and L. Hesselink, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
    [CrossRef] [PubMed]
  6. X. Shi and L. Hesselink, "Design of a C aperture to achieve l/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004).
    [CrossRef]
  7. A. V. Itagi, W. A. Challener, I. K. Sendur, and T. E. Schlesinger, "Finite difference frequency domain scattered field formulation for near field optical data storage," Proc. SPIE 5380, 351-359 (2004).
    [CrossRef]
  8. K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
    [CrossRef]
  9. K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88, 091110 (2005).
  10. L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606-3608 (2006).
    [CrossRef] [PubMed]
  11. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Optical transmission at oblique incidence through a periodic array of sub-wavelength slits in a metallic host," Opt. Express 14, 10220-10227 (2006).
    [CrossRef] [PubMed]
  12. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Surface plasmon polaritons on metallic surfaces," Opt. Express 15, 183-197 (2006).
    [CrossRef]
  13. P.-K Wei, Y.-C. Huang, C.-C. Chieng, F.-G. Tseng, and W. Fann, "Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits," Opt. Express 13, 10784-10794 (2005)
    [CrossRef] [PubMed]
  14. Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, "Extraordinary optical transmission enhancement of asymmetric nanoaperture with surface corrugation," in Proc. Int. Symp. Optical Memory 2005, (Honolulu, 2005).
  15. Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh," High-transmission hybrid-effect-assisted nanoaperture," Opt. Lett. 31, 655-657 (2006).
    [CrossRef] [PubMed]
  16. Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, "Double-Corrugated C-Shaped Aperture for Near-Field Recording," Jpn. J. Appl. Phys. 45, 1348-1350 (2006).
    [CrossRef]
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, New York, 1988).

2006

2005

P.-K Wei, Y.-C. Huang, C.-C. Chieng, F.-G. Tseng, and W. Fann, "Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits," Opt. Express 13, 10784-10794 (2005)
[CrossRef] [PubMed]

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef]

K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88, 091110 (2005).

2004

A. V. Itagi, W. A. Challener, I. K. Sendur, and T. E. Schlesinger, "Finite difference frequency domain scattered field formulation for near field optical data storage," Proc. SPIE 5380, 351-359 (2004).
[CrossRef]

X. Shi and L. Hesselink, "Design of a C aperture to achieve l/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004).
[CrossRef]

2003

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Appl. Phys. Lett.

K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88, 091110 (2005).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, "Double-Corrugated C-Shaped Aperture for Near-Field Recording," Jpn. J. Appl. Phys. 45, 1348-1350 (2006).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Optical transmission at oblique incidence through a periodic array of sub-wavelength slits in a metallic host," Opt. Express 14, 10220-10227 (2006).
[CrossRef] [PubMed]

P.-K Wei, Y.-C. Huang, C.-C. Chieng, F.-G. Tseng, and W. Fann, "Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits," Opt. Express 13, 10784-10794 (2005)
[CrossRef] [PubMed]

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts," Opt. Express 14, 6400-6413 (2006).
[CrossRef] [PubMed]

A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Surface plasmon polaritons on metallic surfaces," Opt. Express 15, 183-197 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef]

Proc. SPIE

A. V. Itagi, W. A. Challener, I. K. Sendur, and T. E. Schlesinger, "Finite difference frequency domain scattered field formulation for near field optical data storage," Proc. SPIE 5380, 351-359 (2004).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other

Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, "Extraordinary optical transmission enhancement of asymmetric nanoaperture with surface corrugation," in Proc. Int. Symp. Optical Memory 2005, (Honolulu, 2005).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Schematic illustration of the optical model and (b) the dimensions of the C-aperture

Fig. 2.
Fig. 2.

The power throughput (PT) at a distance of 50 nm from the aperture and reflection coefficient rp as a function of the incident angle

Fig. 3.
Fig. 3.

(a) Ez, (b) Ex, and (c) Hy field profile, and (d) magnitude of Poynting vector plot when the incident angle is 44 degree. The dashed line showed the contours of the metal film and the C-aperture.

Fig. 4.
Fig. 4.

The spectral response of the power throughput through the ridge waveguide with incident angle of 44 degree

Fig. 5.
Fig. 5.

The electric intensity distribution inside the waveguide at a position of (a) 1/4, (b) 1/2, (c) 3/4 of the length from the entrance plane when the light propagated along the waveguide, and (d) the power throughput decay as a function of the distance from the waveguide

Fig. 6.
Fig. 6.

Power throughput as the waveguide scales up or down by the scale factor in the model of 44-degree illumination

Fig. 7.
Fig. 7.

SEM photo of the ridge waveguide

Fig. 8.
Fig. 8.

Near-field distribution observed by NSOM with (a) normally and (b) 44-degree incident illumination while the red line represented the contours of the C-aperture

Fig. 9.
Fig. 9.

Calculated electric intensity distribution at 50nm from the nano-waveguide with the fabricated dimensions with (a) normally and (b) 44-degree incident illumination

Fig. 10.
Fig. 10.

Calculated (a) Ex and (b) Ez field profile with the fabricated dimensions

Fig. 11.
Fig. 11.

(a) Microscopic photo of a wedge-shaped fiber probe with a 45-degree wedge angle and (b) configuration of measurement setup

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k x = k 0 ( ε m · ε d ε m + ε d ) 1 2
λ SP = 2 π k x

Metrics