Abstract

We demonstrate that fiber lasers spectrally broadened by cross mode coupling can be coherently combined with high efficiency. The spectral broadening that it induces suppresses stimulated Brillouin scattering. Using long cavity length lasers, >800 m, we induce spectral broadening of >50 GHz and show mode by mode coherence in the output of four intracavity coupled fiber lasers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. A. Kozlov, J. Hernandez-Cordero, and T. F. Morse, "All-fiber coherent beam combining of fiber lasers," Opt. Lett. 24, 1814 (1999), and T. B. Simpson, A. Gavrielides, and P. Peterson, "Coherent intra-cavity coupling of fiber lasers," Proc. 14th Annual Mtng. IEEE LEOS, 62 (2001).
    [PubMed]
  2. D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, "Power scaling of fiber lasers with all-fibre interferometric cavity," Electron. Lett. 38, 692 (2002).
    [CrossRef]
  3. H. Bruesselbach, M. Minden, and J. L. Rogers, D. C. Jones, and M. S. Mangir, "200 W self-organized coherent fiber arrays, 2005 Conference on Lasers and Electro-optics, paper CMDD4, 1, 532 (2005).
  4. A. Shirakawa, K. Matsuo, and K. Ueda, "Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control, Proc. SPIE 5709, 165 (2005).
  5. A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, "Coherent addition of fiber lasers by use of a fiber coupler," Opt. Express 10, 1167 (2002).
    [PubMed]
  6. D. Kouznetsov, J. F. Bisson, A. Shirakawa, and K. Ueda, "Limits of Coherent Addition of Lasers: Simple Estimate," Opt. Review 12, 445 (2005), A. E. Siegman, "Resonant modes of linearly coupled multiple fiber laser structures," available at http://www.stanford.edu/~siegman/coupled_fiber_modes.pdf>.
  7. T. B. Simpson, A. Gavrielides, and P. Peterson, "Extraction characteristics of a dual fiber compound cavity," Opt. Express 10, 1060 (2002).
    [PubMed]
  8. H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J. L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 1339 (2005).
    [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition, (Academic Press, 2001).
  10. K. Brown, A.W. Brown, and B. C. Colpitts, "Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor," Opt. Fiber Technol. 11, 131 (2005).
    [CrossRef]
  11. A. E. Siegman, Lasers, (University Science Books, Mill Valley, CA, 1986), Chap. 12.4.

2005 (3)

A. Shirakawa, K. Matsuo, and K. Ueda, "Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control, Proc. SPIE 5709, 165 (2005).

K. Brown, A.W. Brown, and B. C. Colpitts, "Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor," Opt. Fiber Technol. 11, 131 (2005).
[CrossRef]

H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J. L. Rogers, "Self-organized coherence in fiber laser arrays," Opt. Lett. 30, 1339 (2005).
[CrossRef] [PubMed]

2002 (3)

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, "Power scaling of fiber lasers with all-fibre interferometric cavity," Electron. Lett. 38, 692 (2002).
[CrossRef]

T. B. Simpson, A. Gavrielides, and P. Peterson, "Extraction characteristics of a dual fiber compound cavity," Opt. Express 10, 1060 (2002).
[PubMed]

A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, "Coherent addition of fiber lasers by use of a fiber coupler," Opt. Express 10, 1167 (2002).
[PubMed]

Electron. Lett. (1)

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, "Power scaling of fiber lasers with all-fibre interferometric cavity," Electron. Lett. 38, 692 (2002).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

K. Brown, A.W. Brown, and B. C. Colpitts, "Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor," Opt. Fiber Technol. 11, 131 (2005).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

A. Shirakawa, K. Matsuo, and K. Ueda, "Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control, Proc. SPIE 5709, 165 (2005).

Other (5)

D. Kouznetsov, J. F. Bisson, A. Shirakawa, and K. Ueda, "Limits of Coherent Addition of Lasers: Simple Estimate," Opt. Review 12, 445 (2005), A. E. Siegman, "Resonant modes of linearly coupled multiple fiber laser structures," available at http://www.stanford.edu/~siegman/coupled_fiber_modes.pdf>.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition, (Academic Press, 2001).

H. Bruesselbach, M. Minden, and J. L. Rogers, D. C. Jones, and M. S. Mangir, "200 W self-organized coherent fiber arrays, 2005 Conference on Lasers and Electro-optics, paper CMDD4, 1, 532 (2005).

A. E. Siegman, Lasers, (University Science Books, Mill Valley, CA, 1986), Chap. 12.4.

V. A. Kozlov, J. Hernandez-Cordero, and T. F. Morse, "All-fiber coherent beam combining of fiber lasers," Opt. Lett. 24, 1814 (1999), and T. B. Simpson, A. Gavrielides, and P. Peterson, "Coherent intra-cavity coupling of fiber lasers," Proc. 14th Annual Mtng. IEEE LEOS, 62 (2001).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The left figure shows the single ring laser. Wavelength selectivity is provided by the FBG that follows 400 m of fiber in the arm of the optical circulator. DFB#1is for injection of a narrow line source, DFB#2 is a local oscillator for the optical spectra. The right figure shows the reconfiguration of the amplifier segment for four amplifiers. The paths differ in the amplifier arms by approximately 5 m, 1 m, and <0.1 m relative to the short arm.

Fig. 2.
Fig. 2.

Optical spectra (a) and power spectra (b) of the output from the single amplifier ring configuration of Fig. 1(a) for different circulating power levels. Shown with the optical spectra is the low transmission/high reflection band of the FBG.

Fig. 3.
Fig. 3.

Optical spectra corresponding to the four-amplifier ring configuration of Fig. 1. The optical spectra are superposed on the transmission spectrum of the FBG that defines the bandwidth of the ring cavity.

Fig. 4.
Fig. 4.

Power spectra of the photodetected output of the laser array in the configuration corresponding to the optical spectra in Figs. 3.(a) and 3(b) show spectra for both configurations while (c) and (d) correspond to the ~4.1 cm smallest path difference. The horizontal bar in (a) shows the frequency range of (b), and the * in (b) and (c) mark the spectral feature that is resolved in (c) and (d), respectively.

Fig. 5.
Fig. 5.

Calculated relative mode power, S, using a Rigrod-type cavity analysis of a four-laser array. The four array elements have lengths of 800, 805.1, 801, and either 800.045 or 800.014 m as marked. A single pass gain of 12 and output coupler transmission, T2=R2=0.5, were used for the calculation. (a) corresponds to a range similar to Fig. 3 and (b) is a detail, similar to Fig. 4(b).

Tables (1)

Tables Icon

Table 1. Relative output power in the four-laser configuration normalized to the values with one amplifier operating. Output is the value exiting the port of the final 2×2 coupler in the tree of couplers after the amplifiers that is directed to circulate around the laser cavity, and Loss Port is the value out of the other port of the coupler. Grating is the value measured out of the FBG and is more than two orders of magnitude smaller than the other two.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I out = 2 n 2 T circ 1 2 T oc I sat ln [ 2 n 2 T circ 1 2 G 0 ]
η = I 2 , out I out = 4 { 1 + ln 2 ln ( 2 n 2 T circ 1 2 G 0 ) }
E 0 ( L ) = 1 2 e i KL A ( l ) T n = 1 N e i KL n ,
dA dz = g 0 1 + A 2 A ,
NA ( 0 ) = ( 1 2 ) N 2 e i KL f ( A ( 0 ) ) T n = 1 N e i KL n .
n = 1 N sin ( Kl n ) = 0 , C n = n = 1 N cos ( Kl n ) ,
I out = ( 1 2 ) n R 2 T 2 C n 2 1 1 b n ln ( b n e 2 g 0 l ) ,
S = I out I out ( N = 1 ) = C n 2 1 b 1 b n ln ( b n e 2 g 0 l ) ln ( be 2 g 0 l ) ,

Metrics