Abstract

We demonstrate efficient generation of THz pulses by optical rectification of 1.03 um wavelength laser pulses in LiNbO3 using tilted pulse front excitation for velocity matching between the optical and THz fields. Pulse energies of 100 nJ with a spectral bandwidth of up to 2.5 THz were obtained at a pump energy of 400 uJ and 300 fs pulse duration. This conversion efficiency of 2.5×10-4 was an order of magnitude higher than that obtained with collinear optical recitification in GaP, and far higher still than that measured using ZnTe in an optimized geometry. Using a simple model we demonstrate that two- and three-photon absorption strongly limit the THz generation efficiency at high pump fluences in ZnTe and GaP respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Ch. Fattinger and D. Grischkowsky, "Terahertz Beams," Appl. Phys. Lett. 54, 490-492 (1989).
    [CrossRef]
  2. M. Herrmann, M. Tanic and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol 13, 1739-1745 (2002).
    [CrossRef]
  3. R.M. Koehl and K. A. Nelson, "Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves," Chem. Phys. 267, 151-159 (2001).
    [CrossRef]
  4. T. Feurer, J. C. Vaughan, and K. A. Nelson, "Spatiotemporal Coherent Control of Lattice Vibrational Waves," Science 299, 374-377 (2003).
    [CrossRef] [PubMed]
  5. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, "Terahertz polaritonics," Annu. Rev. Mater. Res. 37, 317-350 (2007).
    [CrossRef]
  6. J. Hebling, G. Alm’asi, I. Kozma and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002).
    [PubMed]
  7. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
    [CrossRef]
  8. B. Bartal, I. Z. Kozma, A.G. Stepanov, G. Alm’asi, J. Kuhl, E. Riedle and J. Hebling, "Toward generation of μJ range sub-ps THz pulses by optical rectification," App. Phys. B 86, 419-423 (2007).
    [CrossRef]
  9. K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, "Generation of 10 μJ ultrashort terahertz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
    [CrossRef]
  10. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 m femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005).
    [CrossRef]
  11. J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary and J. F. Lampin, "Terahertz radiation from heavy-ionirradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm," Appl. Phys. Lett. 87, 193510 (2005).
    [CrossRef]
  12. G. Imeshev,M. E. Fermann, K. L. Vodopyanov,M.M. Fejer and X. Yu, J. S. Harris, D. Bliss and C. Lynch, "Highpower source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser," Opt. Express 14, 4439-4444 (2006).
    [CrossRef] [PubMed]
  13. Q. Wu and X.-C. Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
    [CrossRef]
  14. Y. J. Ding, "Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium," Opt. Lett. 29, 2650-2652 (2004).
    [CrossRef] [PubMed]
  15. G. Chang, C. J. Divin, C-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, "Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier," Opt. Express 14, 7909-7913 (2006).
    [CrossRef] [PubMed]
  16. D. Redfield and W. J. Burke, "Optical absorption edge of LiNbO3, " J. Appl. Phys. 45, 4566-4571 (1974).
    [CrossRef]
  17. Y. R. Shen, The principles of nonlinear optics (Wiley 2002).
  18. A. G. Stepanov, A. A. Melnikov, V. O. Kompanets und S. V. Chekalin, "Spectral modification of femtosecond laser pulses in the process of highly efficient generation of terahertz radiation via optical rectification," JETP Lett 85, 227-230 (2007).
    [CrossRef]
  19. T . Löffler, T . Hahn, M . Thomson, F . Jacob and H. Roskos, "Large-area electro-optic ZnTe terahertz emitters," Opt. Express 13, 5353-5362 (2005).
    [CrossRef] [PubMed]
  20. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young and E.W. Van Stryland, J. Opt. Soc. Am. B, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992).
    [CrossRef]
  21. V. Nathan and A. H. Guenther, "Review Of Multiphoton Absorption in Crystalline Solids," J. Opt. Soc. Am. B 2, 294-316 (1985).
    [CrossRef]
  22. J. H. Yee and H. H. M. Chau, Opt. Commun., "Two-photon indirect transition in GaP crystal," Opt. Commun. 10, 56-58 (1974).
    [CrossRef]
  23. S. R. DeSalvo, A. A. Said, D. J. Hagan, E.W. Van Stryland andM. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
    [CrossRef]

2007

B. Bartal, I. Z. Kozma, A.G. Stepanov, G. Alm’asi, J. Kuhl, E. Riedle and J. Hebling, "Toward generation of μJ range sub-ps THz pulses by optical rectification," App. Phys. B 86, 419-423 (2007).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, "Generation of 10 μJ ultrashort terahertz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, "Terahertz polaritonics," Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

A. G. Stepanov, A. A. Melnikov, V. O. Kompanets und S. V. Chekalin, "Spectral modification of femtosecond laser pulses in the process of highly efficient generation of terahertz radiation via optical rectification," JETP Lett 85, 227-230 (2007).
[CrossRef]

2006

2005

T . Löffler, T . Hahn, M . Thomson, F . Jacob and H. Roskos, "Large-area electro-optic ZnTe terahertz emitters," Opt. Express 13, 5353-5362 (2005).
[CrossRef] [PubMed]

M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 m femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005).
[CrossRef]

J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary and J. F. Lampin, "Terahertz radiation from heavy-ionirradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm," Appl. Phys. Lett. 87, 193510 (2005).
[CrossRef]

2004

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Y. J. Ding, "Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium," Opt. Lett. 29, 2650-2652 (2004).
[CrossRef] [PubMed]

2003

T. Feurer, J. C. Vaughan, and K. A. Nelson, "Spatiotemporal Coherent Control of Lattice Vibrational Waves," Science 299, 374-377 (2003).
[CrossRef] [PubMed]

2002

M. Herrmann, M. Tanic and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol 13, 1739-1745 (2002).
[CrossRef]

J. Hebling, G. Alm’asi, I. Kozma and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002).
[PubMed]

2001

R.M. Koehl and K. A. Nelson, "Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves," Chem. Phys. 267, 151-159 (2001).
[CrossRef]

1997

Q. Wu and X.-C. Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

1996

S. R. DeSalvo, A. A. Said, D. J. Hagan, E.W. Van Stryland andM. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

1992

1989

Ch. Fattinger and D. Grischkowsky, "Terahertz Beams," Appl. Phys. Lett. 54, 490-492 (1989).
[CrossRef]

1985

1974

J. H. Yee and H. H. M. Chau, Opt. Commun., "Two-photon indirect transition in GaP crystal," Opt. Commun. 10, 56-58 (1974).
[CrossRef]

D. Redfield and W. J. Burke, "Optical absorption edge of LiNbO3, " J. Appl. Phys. 45, 4566-4571 (1974).
[CrossRef]

Annu. Rev. Mater. Res.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, "Terahertz polaritonics," Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

App. Phys. B

B. Bartal, I. Z. Kozma, A.G. Stepanov, G. Alm’asi, J. Kuhl, E. Riedle and J. Hebling, "Toward generation of μJ range sub-ps THz pulses by optical rectification," App. Phys. B 86, 419-423 (2007).
[CrossRef]

Appl. Phys. B

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Appl. Phys. Lett.

Q. Wu and X.-C. Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, "Generation of 10 μJ ultrashort terahertz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 m femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005).
[CrossRef]

J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary and J. F. Lampin, "Terahertz radiation from heavy-ionirradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm," Appl. Phys. Lett. 87, 193510 (2005).
[CrossRef]

Ch. Fattinger and D. Grischkowsky, "Terahertz Beams," Appl. Phys. Lett. 54, 490-492 (1989).
[CrossRef]

Chem. Phys.

R.M. Koehl and K. A. Nelson, "Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves," Chem. Phys. 267, 151-159 (2001).
[CrossRef]

IEEE J. Quantum Electron.

S. R. DeSalvo, A. A. Said, D. J. Hagan, E.W. Van Stryland andM. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

J. Appl. Phys.

D. Redfield and W. J. Burke, "Optical absorption edge of LiNbO3, " J. Appl. Phys. 45, 4566-4571 (1974).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett

A. G. Stepanov, A. A. Melnikov, V. O. Kompanets und S. V. Chekalin, "Spectral modification of femtosecond laser pulses in the process of highly efficient generation of terahertz radiation via optical rectification," JETP Lett 85, 227-230 (2007).
[CrossRef]

Meas. Sci. Technol

M. Herrmann, M. Tanic and K. Sakai, "Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging," Meas. Sci. Technol 13, 1739-1745 (2002).
[CrossRef]

Opt. Commun.

J. H. Yee and H. H. M. Chau, Opt. Commun., "Two-photon indirect transition in GaP crystal," Opt. Commun. 10, 56-58 (1974).
[CrossRef]

Opt. Express

Opt. Lett.

Science

T. Feurer, J. C. Vaughan, and K. A. Nelson, "Spatiotemporal Coherent Control of Lattice Vibrational Waves," Science 299, 374-377 (2003).
[CrossRef] [PubMed]

Other

Y. R. Shen, The principles of nonlinear optics (Wiley 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Tilted pulse front excitation scheme using a grating to tilt the pulse front and a lens to image it onto the generation crystal. (b) Geometry of the 0.6% MgO doped sLN crystal and polarization of the laser.

Fig. 2.
Fig. 2.

(a) THz pulse energy as function of the pump pulse energy for different materials at 1 kHz repetition rate. The lines indicate quadratic and linear depencences. (b) THz pulse energy from LiNbO3 as function of the pump pulse energy for high repetition rates. The average pump power was kept at 400 mW and the laser repetition rate was varied from 10 to 100 kHz.

Fig. 3.
Fig. 3.

Spectrum and pulse form (inset) of the THz pulse from LiNbO3 generated with tilted pulse front excitation in LiNbO3 at 400 µJ pump pulse energy and 1 kHz repetition rate. The signal was measured by electro-optical sampling using a 2 mm GaP crystal.

Fig. 4.
Fig. 4.

Spectra of the pump pulses scattered from the LN crystal with optimized (solid curve) and reduced (dashed curve) THz generation. The pump pulse energy was 400 µJ.

Fig. 5.
Fig. 5.

Left: Saturation behavior in GaP and fit using up to 3-photon-absorption coefficients. Right: data for LiNbO3 using tilted pulse front excitation and fits using a 4-photon absorption model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ ¯ = λ S ( λ ) d λ S ( λ ) d λ .
Δ λ exp = c v 2 Δ v = 300 μ m ps ( 290 THz ) 2 · 0.92 THz = 3.28 nm .
E pulse THz = E photon THz N photon THz = h v THz · E pulse vis h v vis · η = 1.14 μ J
d I d z = α I ( z ) β I 2 ( z ) γ I 3 ( z ) δ I 4 ( z ) +
d E T Hz d z d eff I ( z ) a T Hz I ( z ) τ h ν [ α + 1 2 β I ( z ) + 1 3 γ I 2 ( z ) + 1 4 δ I 3 ( z ) ] · E ( z )

Metrics