Abstract

Unusual double four-lobe nematic liquid crystal (LC) textures were observed in the carbon nanotube (CNT)-doped nematic LC under electric field. Through the electro-optical studies in a wide range of vertical electric fields in the direction of the long axis of the LC molecules, it was realized that the double four-lobe nematic LC textures were formed in the range of 120 to 160 Vrms at 1 Hz. The formation of these unusual double four-lobe nematic LC textures could originate from the electric field-induced movement of CNTs and the subsequently frustrated reorientation of LCs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. L. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919 (2003).
    [CrossRef]
  2. F. Li, J. West, A. Glushchenko, C. I. Cheon, and Y. Reznikov, "Ferroelectric nanoparticle/liquid-crystal colloids for display applications," J. SID 14, 523-527 (2006).
  3. W. Lee, C.-Y. Wang, and Y.-C. Shih, "Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host," Appl. Phys. Lett. 85, 513-515 (2004).
    [CrossRef]
  4. I.-S. Baik, S. Y. Jeon, S. H. Lee, K. A. Park, S. H. Jeong, K. H. An, and Y. H. Lee, "Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell," Appl. Phys. Lett. 87, 263110 (2005).
    [CrossRef]
  5. I.-S. Baik, S. Y. Jeon, S. J. Jeong, S. H. Lee, K. H. An, S. H. Jeong, and Y. H. Lee, "Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field," J. Appl. Phys. 100, 074306 (2006).
    [CrossRef]
  6. S. Y. Jeon, K. A. Park, I.-S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, "Dynamic response of carbon nanotubes dispersed in nematic liquid crystal," NANO 2, 41-49 (2007).
    [CrossRef]
  7. W. Lee and Y-C. Shih, "Effects of carbon-nanotube doping on the performance of a TN-LCD," J. SID 13, 743-747 (2005).
  8. H. Y Chen and W. Lee, "Electro-optical characteristics of a twisted nematic liquid-crystal cell doped with carbon nanotubes in a DC electric field," Opt. Rev. 12, 223-225 (2005).
    [CrossRef]
  9. I. S. Baik, S. Y. Jeon, K. H. An, J. Choi, S. H. Lee, and Y. H. Lee, "Effects of carbon nanotubes on electro-optic characteristics of a twisted nematic liquid crystal cell," in Proceedings of the Eighth Korean Liquid Crystal Conference (The Korea Liquid Crystal Society, Chungnam, Korea, 2005), pp. 113-115.
  10. I.-S. Baik, J. Y. Lee, S. Y. Jeon, K.-H. An, J. Choi, S. H. Lee, and Y. H. Lee, "Effect of dispersed carbon nanotubes on electro-optic characteristics and orientation of liquid crystal in In-Plane Switching cell," in Proceedings of the Fifth International Meeting on Information Display (The Korean Information Display Society, Seoul, Korea, 2005), pp. 415-418.
  11. S. Y. Jeon, K. A. Park, I.-S. Baik, K. H. An, J. Choi, S. H. Lee, and Y. H. Lee, "Effects of carbon nanotubes on electro-optic characteristics of TN-LC cells," in Proceedings of the 12th International Display Workshops (The Institute of Television Engineers of Japan and Society for Information Display, Takamatsu, Japan, 2005), pp. 167-170.
  12. W. Lee, J.-S. Gau, and H.-Y. Chen, "Electro-optical properties of planar nematic cells impregnated with carbon nanosolids," Appl. Phys. B: Lasers Opt. 81, 171-175 (2005).
    [CrossRef]
  13. C. Y. Huang, C.-Y. Hu, H. C. Pan, and K.-Y. Lo, "Electrooptical response of carbon nanotube-doped liquid crystal devices," Jpn. J. Appl. Phys., Part 1 44, 8077-8081 (2005).
    [CrossRef]
  14. S. Y. Jeon, S. H. Shin, S. J. Jeong, S. H. Lee, S. H. Jeong, Y. H. Lee, H. C. Choi, and K. J. Kim, "Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field," Appl. Phys. Lett. 90, 121901 (2007).
    [CrossRef]
  15. A. K. Srivastava, S. J. Jeong, M. H. Lee, S. H. Lee, S. H. Jeong, and Y. H. Lee, "Dielectrophoresis force driven dynamics of carbon nanotubes in liquid crystal medium," J. Appl. Phys. 102, 043503 (2007).
    [CrossRef]
  16. G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals (Springer-Verlag, New York, 1988), Vol. 2, Chap. 2, pp. 23-24.
  17. B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, Singapore, 1990), Vol. 1, Chap. 9, pp. 201, 208.
  18. H. J. Jeong, K. K. Kim, S. Y. Jeong, M. H. Park, C. W. Yang, and Y. H. Lee, "High-yield catalytic synthesis of thin multiwalled carbon nanotubes," J. Phys. Chem. B 108, 17695 -17698 (2004)
    [CrossRef]
  19. K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, "Anchoring liquid crystal molecule on single-walled carbon nanotube'," J. Phys. Chem. C 111, 1620-1624 (2007).
    [CrossRef]
  20. S. V. Perminov, V. P. Drachev and S. G. Rautain, "Optics of metal nano particle aggregates with light induced motion" Opt. Express 15,8639-8648 (2007).
    [CrossRef] [PubMed]
  21. P. J. Bruke, Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, New York, 2003) Vol. 6, p. 623; http://nano.ece.uci.edu/papers/NanoDEPproof.pdf

2007

S. Y. Jeon, K. A. Park, I.-S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, "Dynamic response of carbon nanotubes dispersed in nematic liquid crystal," NANO 2, 41-49 (2007).
[CrossRef]

S. Y. Jeon, S. H. Shin, S. J. Jeong, S. H. Lee, S. H. Jeong, Y. H. Lee, H. C. Choi, and K. J. Kim, "Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field," Appl. Phys. Lett. 90, 121901 (2007).
[CrossRef]

A. K. Srivastava, S. J. Jeong, M. H. Lee, S. H. Lee, S. H. Jeong, and Y. H. Lee, "Dielectrophoresis force driven dynamics of carbon nanotubes in liquid crystal medium," J. Appl. Phys. 102, 043503 (2007).
[CrossRef]

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, "Anchoring liquid crystal molecule on single-walled carbon nanotube'," J. Phys. Chem. C 111, 1620-1624 (2007).
[CrossRef]

S. V. Perminov, V. P. Drachev and S. G. Rautain, "Optics of metal nano particle aggregates with light induced motion" Opt. Express 15,8639-8648 (2007).
[CrossRef] [PubMed]

2006

I.-S. Baik, S. Y. Jeon, S. J. Jeong, S. H. Lee, K. H. An, S. H. Jeong, and Y. H. Lee, "Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field," J. Appl. Phys. 100, 074306 (2006).
[CrossRef]

F. Li, J. West, A. Glushchenko, C. I. Cheon, and Y. Reznikov, "Ferroelectric nanoparticle/liquid-crystal colloids for display applications," J. SID 14, 523-527 (2006).

2005

I.-S. Baik, S. Y. Jeon, S. H. Lee, K. A. Park, S. H. Jeong, K. H. An, and Y. H. Lee, "Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell," Appl. Phys. Lett. 87, 263110 (2005).
[CrossRef]

W. Lee and Y-C. Shih, "Effects of carbon-nanotube doping on the performance of a TN-LCD," J. SID 13, 743-747 (2005).

H. Y Chen and W. Lee, "Electro-optical characteristics of a twisted nematic liquid-crystal cell doped with carbon nanotubes in a DC electric field," Opt. Rev. 12, 223-225 (2005).
[CrossRef]

W. Lee, J.-S. Gau, and H.-Y. Chen, "Electro-optical properties of planar nematic cells impregnated with carbon nanosolids," Appl. Phys. B: Lasers Opt. 81, 171-175 (2005).
[CrossRef]

C. Y. Huang, C.-Y. Hu, H. C. Pan, and K.-Y. Lo, "Electrooptical response of carbon nanotube-doped liquid crystal devices," Jpn. J. Appl. Phys., Part 1 44, 8077-8081 (2005).
[CrossRef]

2004

W. Lee, C.-Y. Wang, and Y.-C. Shih, "Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host," Appl. Phys. Lett. 85, 513-515 (2004).
[CrossRef]

H. J. Jeong, K. K. Kim, S. Y. Jeong, M. H. Park, C. W. Yang, and Y. H. Lee, "High-yield catalytic synthesis of thin multiwalled carbon nanotubes," J. Phys. Chem. B 108, 17695 -17698 (2004)
[CrossRef]

2003

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. L. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919 (2003).
[CrossRef]

Appl. Phys. B: Lasers Opt.

W. Lee, J.-S. Gau, and H.-Y. Chen, "Electro-optical properties of planar nematic cells impregnated with carbon nanosolids," Appl. Phys. B: Lasers Opt. 81, 171-175 (2005).
[CrossRef]

Appl. Phys. Lett.

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. L. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919 (2003).
[CrossRef]

S. Y. Jeon, S. H. Shin, S. J. Jeong, S. H. Lee, S. H. Jeong, Y. H. Lee, H. C. Choi, and K. J. Kim, "Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field," Appl. Phys. Lett. 90, 121901 (2007).
[CrossRef]

W. Lee, C.-Y. Wang, and Y.-C. Shih, "Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host," Appl. Phys. Lett. 85, 513-515 (2004).
[CrossRef]

I.-S. Baik, S. Y. Jeon, S. H. Lee, K. A. Park, S. H. Jeong, K. H. An, and Y. H. Lee, "Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell," Appl. Phys. Lett. 87, 263110 (2005).
[CrossRef]

J. Appl. Phys.

I.-S. Baik, S. Y. Jeon, S. J. Jeong, S. H. Lee, K. H. An, S. H. Jeong, and Y. H. Lee, "Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field," J. Appl. Phys. 100, 074306 (2006).
[CrossRef]

A. K. Srivastava, S. J. Jeong, M. H. Lee, S. H. Lee, S. H. Jeong, and Y. H. Lee, "Dielectrophoresis force driven dynamics of carbon nanotubes in liquid crystal medium," J. Appl. Phys. 102, 043503 (2007).
[CrossRef]

J. Phys. Chem. B

H. J. Jeong, K. K. Kim, S. Y. Jeong, M. H. Park, C. W. Yang, and Y. H. Lee, "High-yield catalytic synthesis of thin multiwalled carbon nanotubes," J. Phys. Chem. B 108, 17695 -17698 (2004)
[CrossRef]

J. Phys. Chem. C

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, "Anchoring liquid crystal molecule on single-walled carbon nanotube'," J. Phys. Chem. C 111, 1620-1624 (2007).
[CrossRef]

J. SID

F. Li, J. West, A. Glushchenko, C. I. Cheon, and Y. Reznikov, "Ferroelectric nanoparticle/liquid-crystal colloids for display applications," J. SID 14, 523-527 (2006).

W. Lee and Y-C. Shih, "Effects of carbon-nanotube doping on the performance of a TN-LCD," J. SID 13, 743-747 (2005).

Jpn. J. Appl. Phys

C. Y. Huang, C.-Y. Hu, H. C. Pan, and K.-Y. Lo, "Electrooptical response of carbon nanotube-doped liquid crystal devices," Jpn. J. Appl. Phys., Part 1 44, 8077-8081 (2005).
[CrossRef]

NANO

S. Y. Jeon, K. A. Park, I.-S. Baik, S. J. Jeong, S. H. Jeong, K. H. An, S. H. Lee, and Y. H. Lee, "Dynamic response of carbon nanotubes dispersed in nematic liquid crystal," NANO 2, 41-49 (2007).
[CrossRef]

Opt. Express

Opt. Rev.

H. Y Chen and W. Lee, "Electro-optical characteristics of a twisted nematic liquid-crystal cell doped with carbon nanotubes in a DC electric field," Opt. Rev. 12, 223-225 (2005).
[CrossRef]

Other

I. S. Baik, S. Y. Jeon, K. H. An, J. Choi, S. H. Lee, and Y. H. Lee, "Effects of carbon nanotubes on electro-optic characteristics of a twisted nematic liquid crystal cell," in Proceedings of the Eighth Korean Liquid Crystal Conference (The Korea Liquid Crystal Society, Chungnam, Korea, 2005), pp. 113-115.

I.-S. Baik, J. Y. Lee, S. Y. Jeon, K.-H. An, J. Choi, S. H. Lee, and Y. H. Lee, "Effect of dispersed carbon nanotubes on electro-optic characteristics and orientation of liquid crystal in In-Plane Switching cell," in Proceedings of the Fifth International Meeting on Information Display (The Korean Information Display Society, Seoul, Korea, 2005), pp. 415-418.

S. Y. Jeon, K. A. Park, I.-S. Baik, K. H. An, J. Choi, S. H. Lee, and Y. H. Lee, "Effects of carbon nanotubes on electro-optic characteristics of TN-LC cells," in Proceedings of the 12th International Display Workshops (The Institute of Television Engineers of Japan and Society for Information Display, Takamatsu, Japan, 2005), pp. 167-170.

G. Vertogen and W. H. de Jeu, Thermotropic Liquid Crystals (Springer-Verlag, New York, 1988), Vol. 2, Chap. 2, pp. 23-24.

B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, Singapore, 1990), Vol. 1, Chap. 9, pp. 201, 208.

P. J. Bruke, Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, New York, 2003) Vol. 6, p. 623; http://nano.ece.uci.edu/papers/NanoDEPproof.pdf

Supplementary Material (3)

» Media 1: AVI (705 KB)     
» Media 2: AVI (893 KB)     
» Media 3: AVI (931 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

POM microphotographs of a t-MWCNT-doped longitudinally aligned LC cell between crossed polarizers at (A) V=150 Vrms with 60 Hz, and (B) V=0, which was released right after applying 150 Vrms. (C) is the deformed LC directors. The inset in Fig. 1(A) shows the magnified image of a four lobe texture.

Fig. 2.
Fig. 2.

POM microphotographs of four-lobe textures generated in a vertically aligned nematic LC cell with increased ac voltage (with f=1 Hz). The region within the broken red line shows the double four-lobe nematic LC textures.

Fig. 3.
Fig. 3.

POM microphotographs and LC orientations of the CNT-doped nematic LC cells at 180 Vrms with 1 Hz: (A) upward movement of CNT and (B) downward movement of CNT.

Fig. 4.
Fig. 4.

(2.46 MB) Movies of POM and LC orientations of the CNT-doped LC cells in the middle of a cycle at (A) 80 Vrms [Media 1], (B) 120 Vrms, [Media 2] and (C) 200 Vrms with 1 Hz sine wave frequency. Assuming that a CNT starts to move from the bottom electrode by applying electric fields, the deformed LC directors are represented by reddish colors. [Media 3]

Fig. 5.
Fig. 5.

Process of the LC director reorientations during the single cycle at 140 Vrms and f=1 Hz. The d represents the amplitude of translation motion of CNTs in LC medium and d/2 is the distance corresponds to the half of the amplitude of translation motion of CNTs in LC medium for 140 Vrms and f=1 Hz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

v = ( E 0 E cr ) 2 Γ ε m Re { K ( ε cnt * , ε m * ) } m sin ( ω t )
x = 2 ( E 0 E cr ) ω 2 Γ ε m Re { K ( ε cnt * , ε m * ) } m ( sin 2 ω t 2 )
Ampl = 2 ( E 0 E cr ) ω 2 Γ ε m Re { K ( ε cnt * , ε m * ) } m
T T o = sin 2 2 ψ ( V , t ) sin 2 ( Γ eff ( V , t ) 2 )

Metrics