Abstract

The electro-optical responses of the in-plane switching (IPS) dual-frequency liquid crystal (LC) cell operated with the amplitude-modulation method and the frequency-modulation method were investigated. The obtained results reveal that the electric torque exerted to the LCs and the strong anchoring energy produced from the rubbed polyimide dominate the reorientation of the LCs. With the frequency-modulation method, the generated electric torque combined with the strong surface anchoring energy give the cell a very short fall time, which is independent of the applied frequency. A new waveform composed of the amplitude modulation and the frequency modulation of the supplied voltage-pulse to achieve a fast responding IPS LC cell is proposed. The obtained response time is much less than that of the conventional amplitude-modulation method.

©2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Electro-optical response of the in-plane switching liquid crystal device fabricated using two-easy-axes substrate

Chi Yen Huang, Chia Ting Hsieh, and Jing Rui Tian
Opt. Express 14(21) 9931-9938 (2006)

Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure

Tae-Hoon Choi, Yeongyu Choi, Jae-Hyeon Woo, Seung-Won Oh, and Tae-Hoon Yoon
Opt. Express 24(14) 15987-15996 (2016)

Switching of polymer-stabilized vertical alignment liquid crystal cell

Chi -Yen Huang, Wen -Yi Jhuang, and Chia -Ting Hsieh
Opt. Express 16(6) 3859-3864 (2008)

References

  • View by:

  1. E. Lueder, Liquid Crystal Displays, Addressing Schemes and Electro-optical Effects (John Wiley and Sons, Singapore, 2001).
  2. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).
  3. T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” SID Digest 14, 110–113 (1973).
  4. R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45, 5466–5468 (1974).
    [Crossref]
  5. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895–3897 (1995).
    [Crossref]
  6. J. S. Lin, K. H. Yang, and S. H. Chen, “High transmittance pixel- and common-electrode structures design for in-plane switching mode with low crosstalk,” Jpn. J. Appl. Phys. 43, 4276–4280 (2004).
    [Crossref]
  7. K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
    [Crossref]
  8. C. Chiccoli, P. Pasini, S. Guzzetti, and C. Zannoni, “A Monte Carlo simulation of an in-plane switching liquid crystal display,” Int. J. Modern Physic. C 9, 409–419 (1998).
    [Crossref]
  9. M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69, 623–625 (1996).
    [Crossref]
  10. K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389–392 (1998).
    [Crossref]
  11. D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393–396 (1998).
    [Crossref]
  12. M. Hasegawa, “Response time improvement of the in-plane-switching mode,” SID Digest 28, 699–702 (1997).
  13. M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
    [Crossref]
  14. Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S. T. Wu, “Optimal rubbing angle for reflective in-plane-switching liquid crystal displays,” Appl. Phys. Lett. 81, 4907–4909 (2002).
    [Crossref]
  15. C. Y. Huang, C. T. Hsieh, and J. R. Tian, “Electro-optical response of the in-plane switching liquid crystal device fabricated using two-easy-axes substrate,” Opt. Express 14, 9931–9938 (2006).
    [Crossref] [PubMed]
  16. R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33, 829–832 (2006).
    [Crossref]
  17. S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
    [Crossref]
  18. X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, “Reduction in driving voltage of in-plane switching liquid crystal displays using photo-alignment method,” Jpn. J. Appl. Phys. 37, L743–745 (1998).
    [Crossref]
  19. H. Nakamura, J. Crain, and K. Sekiya, “Optimized active-matrix drives for liquid crystal displays,” J. Appl. Phys. 90, 2122–2127 (2001).
    [Crossref]
  20. T. Kim, B. Park, B. Shin, B. H. Berkeley, and S. S. Kim, “Response time compensation for black frame insertion,” SID Digest  37, 1793–1796 (2006).
    [Crossref]
  21. I. Fujieda, “Liquid crystal phase grating based on in-plane switching,” Appl. Optics 40, 6252–6259 (2001).
    [Crossref]
  22. C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
    [Crossref]

2006 (3)

C. Y. Huang, C. T. Hsieh, and J. R. Tian, “Electro-optical response of the in-plane switching liquid crystal device fabricated using two-easy-axes substrate,” Opt. Express 14, 9931–9938 (2006).
[Crossref] [PubMed]

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33, 829–832 (2006).
[Crossref]

T. Kim, B. Park, B. Shin, B. H. Berkeley, and S. S. Kim, “Response time compensation for black frame insertion,” SID Digest  37, 1793–1796 (2006).
[Crossref]

2005 (1)

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[Crossref]

2004 (2)

J. S. Lin, K. H. Yang, and S. H. Chen, “High transmittance pixel- and common-electrode structures design for in-plane switching mode with low crosstalk,” Jpn. J. Appl. Phys. 43, 4276–4280 (2004).
[Crossref]

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

2002 (1)

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S. T. Wu, “Optimal rubbing angle for reflective in-plane-switching liquid crystal displays,” Appl. Phys. Lett. 81, 4907–4909 (2002).
[Crossref]

2001 (2)

H. Nakamura, J. Crain, and K. Sekiya, “Optimized active-matrix drives for liquid crystal displays,” J. Appl. Phys. 90, 2122–2127 (2001).
[Crossref]

I. Fujieda, “Liquid crystal phase grating based on in-plane switching,” Appl. Optics 40, 6252–6259 (2001).
[Crossref]

2000 (1)

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

1999 (1)

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[Crossref]

1998 (4)

X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, “Reduction in driving voltage of in-plane switching liquid crystal displays using photo-alignment method,” Jpn. J. Appl. Phys. 37, L743–745 (1998).
[Crossref]

C. Chiccoli, P. Pasini, S. Guzzetti, and C. Zannoni, “A Monte Carlo simulation of an in-plane switching liquid crystal display,” Int. J. Modern Physic. C 9, 409–419 (1998).
[Crossref]

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389–392 (1998).
[Crossref]

D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393–396 (1998).
[Crossref]

1997 (1)

M. Hasegawa, “Response time improvement of the in-plane-switching mode,” SID Digest 28, 699–702 (1997).

1996 (1)

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69, 623–625 (1996).
[Crossref]

1995 (1)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895–3897 (1995).
[Crossref]

1974 (1)

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45, 5466–5468 (1974).
[Crossref]

1973 (1)

T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” SID Digest 14, 110–113 (1973).

Akahane, T.

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Akiyama, H.

X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, “Reduction in driving voltage of in-plane switching liquid crystal displays using photo-alignment method,” Jpn. J. Appl. Phys. 37, L743–745 (1998).
[Crossref]

Berkeley, B. H.

T. Kim, B. Park, B. Shin, B. H. Berkeley, and S. S. Kim, “Response time compensation for black frame insertion,” SID Digest  37, 1793–1796 (2006).
[Crossref]

Bowley, C. C.

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[Crossref]

Chen, S. H.

J. S. Lin, K. H. Yang, and S. H. Chen, “High transmittance pixel- and common-electrode structures design for in-plane switching mode with low crosstalk,” Jpn. J. Appl. Phys. 43, 4276–4280 (2004).
[Crossref]

Chiccoli, C.

C. Chiccoli, P. Pasini, S. Guzzetti, and C. Zannoni, “A Monte Carlo simulation of an in-plane switching liquid crystal display,” Int. J. Modern Physic. C 9, 409–419 (1998).
[Crossref]

Cho, H. M.

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

Crain, J.

H. Nakamura, J. Crain, and K. Sekiya, “Optimized active-matrix drives for liquid crystal displays,” J. Appl. Phys. 90, 2122–2127 (2001).
[Crossref]

Crawford, G. P.

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[Crossref]

Escuti, M. J.

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[Crossref]

Fujieda, I.

I. Fujieda, “Liquid crystal phase grating based on in-plane switching,” Appl. Optics 40, 6252–6259 (2001).
[Crossref]

Fujiwara, T.

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Guan, R. H.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33, 829–832 (2006).
[Crossref]

Guzzetti, S.

C. Chiccoli, P. Pasini, S. Guzzetti, and C. Zannoni, “A Monte Carlo simulation of an in-plane switching liquid crystal display,” Int. J. Modern Physic. C 9, 409–419 (1998).
[Crossref]

Hasegawa, M.

M. Hasegawa, “Response time improvement of the in-plane-switching mode,” SID Digest 28, 699–702 (1997).

Hong, S. H.

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

Hsieh, C. T.

Huang, C. Y.

Iimura, Y.

X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, “Reduction in driving voltage of in-plane switching liquid crystal displays using photo-alignment method,” Jpn. J. Appl. Phys. 37, L743–745 (1998).
[Crossref]

Iwamoto, Y.

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Jeong, Y. H.

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

Kang, W. X.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33, 829–832 (2006).
[Crossref]

Kawakami, A.

X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, “Reduction in driving voltage of in-plane switching liquid crystal displays using photo-alignment method,” Jpn. J. Appl. Phys. 37, L743–745 (1998).
[Crossref]

Kawakami, H.

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389–392 (1998).
[Crossref]

Kim, H. Y.

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

Kim, S. S.

T. Kim, B. Park, B. Shin, B. H. Berkeley, and S. S. Kim, “Response time compensation for black frame insertion,” SID Digest  37, 1793–1796 (2006).
[Crossref]

Kim, T.

T. Kim, B. Park, B. Shin, B. H. Berkeley, and S. S. Kim, “Response time compensation for black frame insertion,” SID Digest  37, 1793–1796 (2006).
[Crossref]

Kimura, M.

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Klement, D.

D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393–396 (1998).
[Crossref]

Kobayashi, K.

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Kobayashi, S.

X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, “Reduction in driving voltage of in-plane switching liquid crystal displays using photo-alignment method,” Jpn. J. Appl. Phys. 37, L743–745 (1998).
[Crossref]

Kondo, K.

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389–392 (1998).
[Crossref]

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69, 623–625 (1996).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895–3897 (1995).
[Crossref]

Konishi, N.

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389–392 (1998).
[Crossref]

Lee, S. H.

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

Lee, W. G.

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

Li, X. T.

X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, “Reduction in driving voltage of in-plane switching liquid crystal displays using photo-alignment method,” Jpn. J. Appl. Phys. 37, L743–745 (1998).
[Crossref]

Lin, J. S.

J. S. Lin, K. H. Yang, and S. H. Chen, “High transmittance pixel- and common-electrode structures design for in-plane switching mode with low crosstalk,” Jpn. J. Appl. Phys. 43, 4276–4280 (2004).
[Crossref]

Lueder, E.

E. Lueder, Liquid Crystal Displays, Addressing Schemes and Electro-optical Effects (John Wiley and Sons, Singapore, 2001).

Ma, H.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S. T. Wu, “Optimal rubbing angle for reflective in-plane-switching liquid crystal displays,” Appl. Phys. Lett. 81, 4907–4909 (2002).
[Crossref]

Matsuyama, S.

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389–392 (1998).
[Crossref]

Nakamura, H.

H. Nakamura, J. Crain, and K. Sekiya, “Optimized active-matrix drives for liquid crystal displays,” J. Appl. Phys. 90, 2122–2127 (2001).
[Crossref]

Oh-e, M.

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69, 623–625 (1996).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895–3897 (1995).
[Crossref]

Oka, S.

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Park, B.

T. Kim, B. Park, B. Shin, B. H. Berkeley, and S. S. Kim, “Response time compensation for black frame insertion,” SID Digest  37, 1793–1796 (2006).
[Crossref]

Pasini, P.

C. Chiccoli, P. Pasini, S. Guzzetti, and C. Zannoni, “A Monte Carlo simulation of an in-plane switching liquid crystal display,” Int. J. Modern Physic. C 9, 409–419 (1998).
[Crossref]

Sekiya, K.

H. Nakamura, J. Crain, and K. Sekiya, “Optimized active-matrix drives for liquid crystal displays,” J. Appl. Phys. 90, 2122–2127 (2001).
[Crossref]

Shimojo, T.

T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” SID Digest 14, 110–113 (1973).

Shin, B.

T. Kim, B. Park, B. Shin, B. H. Berkeley, and S. S. Kim, “Response time compensation for black frame insertion,” SID Digest  37, 1793–1796 (2006).
[Crossref]

Soref, R. A.

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45, 5466–5468 (1974).
[Crossref]

Sun, Y.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S. T. Wu, “Optimal rubbing angle for reflective in-plane-switching liquid crystal displays,” Appl. Phys. Lett. 81, 4907–4909 (2002).
[Crossref]

Sun, Y. B.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33, 829–832 (2006).
[Crossref]

Takahashi, T.

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Tarumi, K.

D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393–396 (1998).
[Crossref]

Tian, J. R.

Toko, Y.

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Wen, C. H.

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[Crossref]

Wu, S. T.

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[Crossref]

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S. T. Wu, “Optimal rubbing angle for reflective in-plane-switching liquid crystal displays,” Appl. Phys. Lett. 81, 4907–4909 (2002).
[Crossref]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).

Yang, K. H.

J. S. Lin, K. H. Yang, and S. H. Chen, “High transmittance pixel- and common-electrode structures design for in-plane switching mode with low crosstalk,” Jpn. J. Appl. Phys. 43, 4276–4280 (2004).
[Crossref]

Zannoni, C.

C. Chiccoli, P. Pasini, S. Guzzetti, and C. Zannoni, “A Monte Carlo simulation of an in-plane switching liquid crystal display,” Int. J. Modern Physic. C 9, 409–419 (1998).
[Crossref]

Zhang, Z.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S. T. Wu, “Optimal rubbing angle for reflective in-plane-switching liquid crystal displays,” Appl. Phys. Lett. 81, 4907–4909 (2002).
[Crossref]

Zhu, X.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S. T. Wu, “Optimal rubbing angle for reflective in-plane-switching liquid crystal displays,” Appl. Phys. Lett. 81, 4907–4909 (2002).
[Crossref]

Appl. Optics (1)

I. Fujieda, “Liquid crystal phase grating based on in-plane switching,” Appl. Optics 40, 6252–6259 (2001).
[Crossref]

Appl. Phys. Lett. (5)

C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86, 231104 (2005).
[Crossref]

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69, 623–625 (1996).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895–3897 (1995).
[Crossref]

M. J. Escuti, C. C. Bowley, and G. P. Crawford, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266 (1999).
[Crossref]

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S. T. Wu, “Optimal rubbing angle for reflective in-plane-switching liquid crystal displays,” Appl. Phys. Lett. 81, 4907–4909 (2002).
[Crossref]

Int. J. Modern Physic. C (1)

C. Chiccoli, P. Pasini, S. Guzzetti, and C. Zannoni, “A Monte Carlo simulation of an in-plane switching liquid crystal display,” Int. J. Modern Physic. C 9, 409–419 (1998).
[Crossref]

J. Appl. Phys. (3)

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Lee, “Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,” J. Appl. Phys. 87, 8259–8263 (2000).
[Crossref]

R. A. Soref, “Field effects in nematic liquid crystals obtained with interdigital electrodes,” J. Appl. Phys. 45, 5466–5468 (1974).
[Crossref]

H. Nakamura, J. Crain, and K. Sekiya, “Optimized active-matrix drives for liquid crystal displays,” J. Appl. Phys. 90, 2122–2127 (2001).
[Crossref]

Jpn. J. Appl. Phys. (3)

X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, “Reduction in driving voltage of in-plane switching liquid crystal displays using photo-alignment method,” Jpn. J. Appl. Phys. 37, L743–745 (1998).
[Crossref]

J. S. Lin, K. H. Yang, and S. H. Chen, “High transmittance pixel- and common-electrode structures design for in-plane switching mode with low crosstalk,” Jpn. J. Appl. Phys. 43, 4276–4280 (2004).
[Crossref]

K. Kobayashi, T. Fujiwara, S. Oka, Y. Iwamoto, Y. Toko, T. Takahashi, M. Kimura, and T. Akahane, “Amorphous in-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics,” Jpn. J. Appl. Phys.  43, 1464–1468 (2004).
[Crossref]

Liq. Cryst. (1)

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33, 829–832 (2006).
[Crossref]

Opt. Express (1)

SID Digest (5)

T. Shimojo, “Field-effect liquid crystal displays with interdigital electrodes,” SID Digest 14, 110–113 (1973).

K. Kondo, S. Matsuyama, N. Konishi, and H. Kawakami, “Materials and components optimization for IPS TFT-LCDs,” SID Digest 29, 389–392 (1998).
[Crossref]

D. Klement and K. Tarumi, “Liquid crystal material development of IPS-TFT displays,” SID Digest 28, 393–396 (1998).
[Crossref]

M. Hasegawa, “Response time improvement of the in-plane-switching mode,” SID Digest 28, 699–702 (1997).

T. Kim, B. Park, B. Shin, B. H. Berkeley, and S. S. Kim, “Response time compensation for black frame insertion,” SID Digest  37, 1793–1796 (2006).
[Crossref]

Other (2)

E. Lueder, Liquid Crystal Displays, Addressing Schemes and Electro-optical Effects (John Wiley and Sons, Singapore, 2001).

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley and Sons, Singapore, 2001).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The geometry of the interdigitated-electrode-substrate used in this experiment.
Fig. 2.
Fig. 2. (a) measured transmittances of the cell as a function of amplitude of the supplied voltage at the frequencies of 10, 25 and 50 kHz. (b) measured transmittances of the cell as a function of frequency of the supplied voltage at the amplitudes of 5, 10 and 15V.
Fig. 3.
Fig. 3. (a) amplitude-modulation waveform and (b) measured response times of the cell as a function of amplitude of the supplied voltage. The frequency of the supplied voltage is fixed at 50 kHz.
Fig. 4.
Fig. 4. (a) frequency-modulation waveform and (b) measured response times of the cell as a function of frequency of the supplied voltage. The amplitude of the supplied voltage is fixed at 15 V. The inset plots the fall time on an expanded scale.
Fig. 5.
Fig. 5. (a) Proposed addressing waveform and (b) measured total response times of the cell operated using the frequency-modulation method with the applied amplitude of 15 V, the amplitude-modulation method with the applied frequency of 15 kHz, and the proposed addressing waveform with the applied amplitude of 15 V. The inset plots the measured rise time and fall time operated with the proposed addressing waveform on an expanded scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = sin 2 ( 2 Ψ ) sin 2 [ π d Δ n λ ] ,

Metrics