Abstract

A new Q-switched crystal Cr5+:GdVO4 was grown by the Czochralski method for the first time, to our knowledge. Polarized absorption spectra of Cr5+:GdVO4 were measured at room temperature. The results showed that the crystal has polarized absorption properties, and the absorption band of π-polarized spectra located at 900 to 1300 nm should be suitable as a passive saturable absorber Q-switched laser at about 1 µm. With Cr5+:GdVO4 as a saturable absorber, the pulsed laser performance of Nd:Lu0.5Gd0.5VO4 at 1.06 µm was demonstrated. The maximum average output power of 122 mW was obtained under a pump power of 3.79 W. The shortest pulse width and largest pulse energy obtained were 361 ns and 0.77 µJ, respectively. To our knowledge, it is the first time the absorption spectra of Cr5+:GdVO4 and a pulsed laser with the crystal as the saturable absorber have been obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Suck, "Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers," Appl. Phys. B 72, 515-562, (2001).
    [CrossRef]
  2. S. A. Zolotovskaya, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, "Absorption saturation properties and laser Q-switch performance of Cr5+-doped YVO4 crystal," Appl. Phys. B 86, 667-671 (2007).
    [CrossRef]
  3. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M, Jiang, and Y. T. Chow, "Characterization of the laser crystal Nd:GdVO4," J. Opt. Soc. Am. B. 19, 18-27 (2002).
  4. T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Scherbakov, "Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4," Appl. Phys. B 58, 373-379 (1994).
    [CrossRef]
  5. J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum. Electron. 31, 1890-1901 (1995).
    [CrossRef]
  6. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, "Optimization of Cr4+-dopedsaturable-absorber Q-switched lasers," IEEE J. Quantum. Electron. 33, 2286-2294 (1997).
    [CrossRef]
  7. P. Gerner, K. Krämer, and H. U. Güdel, "Broadband Cr5+-sensitized Er3+ luminescence in YVO4," J. Lumin,  102-103, 112-118 (2003).
    [CrossRef]
  8. M. F. Hazenkamp, A. C. Stückl, E. Cavalli, and H. U. Güdel, "Optical spectroscopy and density functional calculations of chromium (V)-doped YVO4 and YPO4: influence of the second coordination sphere," Inorg. Chem. 39, 251-254 (2000).
    [CrossRef]
  9. Y. Shimony, Z. Burshtein, and Y. Kalisky, "Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser," IEEE J. Quantum. Electron. 31, 1738-1741 (1995).
    [CrossRef]
  10. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, M. H. Jiang, and X. Y. Zhang, "Continuous-wave and passively Q-switched laser performance of a Nd-doped mixed crystal Nd:Lu0.5Gd0.5VO4, " Appl. Phys. Lett. 90, 231110 (2007).
    [CrossRef]

2007

S. A. Zolotovskaya, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, "Absorption saturation properties and laser Q-switch performance of Cr5+-doped YVO4 crystal," Appl. Phys. B 86, 667-671 (2007).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, M. H. Jiang, and X. Y. Zhang, "Continuous-wave and passively Q-switched laser performance of a Nd-doped mixed crystal Nd:Lu0.5Gd0.5VO4, " Appl. Phys. Lett. 90, 231110 (2007).
[CrossRef]

2003

P. Gerner, K. Krämer, and H. U. Güdel, "Broadband Cr5+-sensitized Er3+ luminescence in YVO4," J. Lumin,  102-103, 112-118 (2003).
[CrossRef]

2002

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M, Jiang, and Y. T. Chow, "Characterization of the laser crystal Nd:GdVO4," J. Opt. Soc. Am. B. 19, 18-27 (2002).

2001

S. Suck, "Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers," Appl. Phys. B 72, 515-562, (2001).
[CrossRef]

2000

M. F. Hazenkamp, A. C. Stückl, E. Cavalli, and H. U. Güdel, "Optical spectroscopy and density functional calculations of chromium (V)-doped YVO4 and YPO4: influence of the second coordination sphere," Inorg. Chem. 39, 251-254 (2000).
[CrossRef]

1997

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, "Optimization of Cr4+-dopedsaturable-absorber Q-switched lasers," IEEE J. Quantum. Electron. 33, 2286-2294 (1997).
[CrossRef]

1995

Y. Shimony, Z. Burshtein, and Y. Kalisky, "Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser," IEEE J. Quantum. Electron. 31, 1738-1741 (1995).
[CrossRef]

J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum. Electron. 31, 1890-1901 (1995).
[CrossRef]

1994

T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Scherbakov, "Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4," Appl. Phys. B 58, 373-379 (1994).
[CrossRef]

Appl. Phys. B

T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Scherbakov, "Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4," Appl. Phys. B 58, 373-379 (1994).
[CrossRef]

S. Suck, "Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers," Appl. Phys. B 72, 515-562, (2001).
[CrossRef]

S. A. Zolotovskaya, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, "Absorption saturation properties and laser Q-switch performance of Cr5+-doped YVO4 crystal," Appl. Phys. B 86, 667-671 (2007).
[CrossRef]

Appl. Phys. Lett.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, M. H. Jiang, and X. Y. Zhang, "Continuous-wave and passively Q-switched laser performance of a Nd-doped mixed crystal Nd:Lu0.5Gd0.5VO4, " Appl. Phys. Lett. 90, 231110 (2007).
[CrossRef]

IEEE J. Quantum. Electron.

Y. Shimony, Z. Burshtein, and Y. Kalisky, "Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser," IEEE J. Quantum. Electron. 31, 1738-1741 (1995).
[CrossRef]

J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum. Electron. 31, 1890-1901 (1995).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, "Optimization of Cr4+-dopedsaturable-absorber Q-switched lasers," IEEE J. Quantum. Electron. 33, 2286-2294 (1997).
[CrossRef]

Inorg. Chem.

M. F. Hazenkamp, A. C. Stückl, E. Cavalli, and H. U. Güdel, "Optical spectroscopy and density functional calculations of chromium (V)-doped YVO4 and YPO4: influence of the second coordination sphere," Inorg. Chem. 39, 251-254 (2000).
[CrossRef]

J. Lumin

P. Gerner, K. Krämer, and H. U. Güdel, "Broadband Cr5+-sensitized Er3+ luminescence in YVO4," J. Lumin,  102-103, 112-118 (2003).
[CrossRef]

J. Opt. Soc. Am. B.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M, Jiang, and Y. T. Chow, "Characterization of the laser crystal Nd:GdVO4," J. Opt. Soc. Am. B. 19, 18-27 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of experimental laser setup.

Fig. 2.
Fig. 2.

Polarized absorption spectra of Cr5+:GdVO4. The inset shows the energy level diagram with the selection rules for Cr5+ (3d1 ion) in a tetrahedral crystal field of symmetry D2d comparing with that shown in Ref. [8].

Fig. 3.
Fig. 3.

Output power versus the increase of incident pump power.

Fig. 4.
Fig. 4.

Pulse Repetition Frequency (PRF) versus the incident pump power.

Fig. 5.
Fig. 5.

Pulse width versus the incident pump power.

Fig. 6.
Fig. 6.

Pulse energy versus incident pump power.

Fig. 7.
Fig. 7.

Pulse train with repetition rate of 131.6 kHz.

Metrics