Abstract

We have fabricated a three-contact photoconductive antenna for the polarization-sensitive detection of terahertz electromagnetic radiation. Taking into account all three photoconductive signal current components, this three-contact photoconductive antenna can measure the polarization state of pulsed THz radiation at an accuracy comparable to that achieved using the conventional method which employs a set of wire-grid polarizers. The three-contact photoconductive receiver may be useful for polarization-sensitive spectroscopy such as vibrational circular dichroism spectroscopy and ellipsometry in the THz frequency region.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. J. H. W. G. den Boer, G. M. W. Kroesen, W. de Zeeuw, and F. J. de Hoog, "Improved polarizer in the infrared: two wire-grid polarizers in tandem," Opt. Lett. 20, 800-802 (1995).
  2. N. V. Cohan and H. F. Hameka, "Isotope effects in optical rotation," J. Am. Chem. Soc. 88, 2136-2142 (1966).
    [CrossRef]
  3. L. A. Nafie, "Infrared and raman vibrational optical activity: theoretical and experimental aspects," Annu. Rev. Phys. Chem. 48, 357-386 (1997).
    [CrossRef]
  4. P. L. Polavarapu and Z. Deng, "Measurement of vibrational circular dichroism below 600 cm-1: progress towards meeting the challenge," Appl. Spectrosc. 50, 686-692 (1996).
    [CrossRef]
  5. J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, S. J. Allen, and K. W. Plaxco, "Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life's metabolic and genetic machinery," Astrobiology 3, 489-504 (2003).
    [CrossRef]
  6. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
    [CrossRef]
  7. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, "An ion-implanted InP receiver for polarization resolved terahertz spectroscopy," Opt. Express 15, 7047-7057 (2007).
    [CrossRef]
  8. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, "Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna," Opt. Express 14, 4486-4493 (2006).
    [CrossRef]
  9. Q. Chen and X.-C. Zhang, "Polarization modulation in optoelectronic generation and detection of terahertz beams," Appl. Phys. Lett. 74, 3435-3437 (1999).
    [CrossRef]
  10. R. Shimano, H. Nishimura and T. Sato, "Frequency tunable circular polarization control of terahertz radiation," Jpn. J. Appl. Phys. 44, L676-L678 (2005).
    [CrossRef]
  11. D. C. Look, "Molecular beam epitaxial GaAs grown at low temperatures," Thin Solid Films 231, 61-73 (1993).
    [CrossRef]
  12. M. Tani, K. Sakai, H. Abe, S. Nakashima, H. Harima, M. Hangyo, Y. Tokuda, K. Kanamoto, Y. Abe, and N. Tsukada, "Spectroscopic characterization of low-temperature grown GaAs epitaxial films," Jpn. J. Appl. Phys. 33, 4807-4811 (1994).
    [CrossRef]
  13. C. L. Mok, W. G. Chambers, T. J. Parker, and A. E. Costley, "The far-infrared performance and application of free-standing grids wound from 5μm diameter tungsten wire," Infrared Phys. 19, 437-442 (1979).
    [CrossRef]
  14. A. Filin, M. Stowe, and R. Kersting, "Time-domain differentiation of terahertz pulses," Opt. Lett. 26, 2008-2010 (2001).
    [CrossRef]

2007

2006

2005

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

R. Shimano, H. Nishimura and T. Sato, "Frequency tunable circular polarization control of terahertz radiation," Jpn. J. Appl. Phys. 44, L676-L678 (2005).
[CrossRef]

2003

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, S. J. Allen, and K. W. Plaxco, "Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life's metabolic and genetic machinery," Astrobiology 3, 489-504 (2003).
[CrossRef]

2001

1999

Q. Chen and X.-C. Zhang, "Polarization modulation in optoelectronic generation and detection of terahertz beams," Appl. Phys. Lett. 74, 3435-3437 (1999).
[CrossRef]

1997

L. A. Nafie, "Infrared and raman vibrational optical activity: theoretical and experimental aspects," Annu. Rev. Phys. Chem. 48, 357-386 (1997).
[CrossRef]

1996

1995

1994

M. Tani, K. Sakai, H. Abe, S. Nakashima, H. Harima, M. Hangyo, Y. Tokuda, K. Kanamoto, Y. Abe, and N. Tsukada, "Spectroscopic characterization of low-temperature grown GaAs epitaxial films," Jpn. J. Appl. Phys. 33, 4807-4811 (1994).
[CrossRef]

1993

D. C. Look, "Molecular beam epitaxial GaAs grown at low temperatures," Thin Solid Films 231, 61-73 (1993).
[CrossRef]

1979

C. L. Mok, W. G. Chambers, T. J. Parker, and A. E. Costley, "The far-infrared performance and application of free-standing grids wound from 5μm diameter tungsten wire," Infrared Phys. 19, 437-442 (1979).
[CrossRef]

1966

N. V. Cohan and H. F. Hameka, "Isotope effects in optical rotation," J. Am. Chem. Soc. 88, 2136-2142 (1966).
[CrossRef]

Annu. Rev. Phys. Chem.

L. A. Nafie, "Infrared and raman vibrational optical activity: theoretical and experimental aspects," Annu. Rev. Phys. Chem. 48, 357-386 (1997).
[CrossRef]

Appl. Phys. Lett.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Q. Chen and X.-C. Zhang, "Polarization modulation in optoelectronic generation and detection of terahertz beams," Appl. Phys. Lett. 74, 3435-3437 (1999).
[CrossRef]

Appl. Spectrosc.

Astrobiology

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, S. J. Allen, and K. W. Plaxco, "Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life's metabolic and genetic machinery," Astrobiology 3, 489-504 (2003).
[CrossRef]

Infrared Phys.

C. L. Mok, W. G. Chambers, T. J. Parker, and A. E. Costley, "The far-infrared performance and application of free-standing grids wound from 5μm diameter tungsten wire," Infrared Phys. 19, 437-442 (1979).
[CrossRef]

J. Am. Chem. Soc.

N. V. Cohan and H. F. Hameka, "Isotope effects in optical rotation," J. Am. Chem. Soc. 88, 2136-2142 (1966).
[CrossRef]

Jpn. J. Appl. Phys.

M. Tani, K. Sakai, H. Abe, S. Nakashima, H. Harima, M. Hangyo, Y. Tokuda, K. Kanamoto, Y. Abe, and N. Tsukada, "Spectroscopic characterization of low-temperature grown GaAs epitaxial films," Jpn. J. Appl. Phys. 33, 4807-4811 (1994).
[CrossRef]

R. Shimano, H. Nishimura and T. Sato, "Frequency tunable circular polarization control of terahertz radiation," Jpn. J. Appl. Phys. 44, L676-L678 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Thin Solid Films

D. C. Look, "Molecular beam epitaxial GaAs grown at low temperatures," Thin Solid Films 231, 61-73 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics