Abstract

Semiconducting nanowires, such as ZnO and Si, are used in the fields of nanophotonics and nanoelectronics. Optical tweezers offer the promise of flexible positional control of such particles in a liquid, but so far this has been limited to either manipulation close to the surface, or to axial trapping of nanowires. We show the three-dimensional trapping of ZnO and silica-coated Si nanowires in counter-propagating line tweezers, and demonstrate translational and rotational in-plane manipulation, away from the surfaces. The high-refractive index particles investigated — ZnO wires (n ~1.9) with varying lengths up to 20µm and 6-µm-long silica-coated Si wires (n=3.6) — could not be trapped in single-beam line traps. Opposite surface charges are used to fix the nanowires to a surface. Full translational and in-plane rotational control of semiconducting nanowires expands the possibilities to position individual wires in complex geometries significantly.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional Laser Emission from the end Facets of a ZnO Nanowire," Nano Lett. 6, 2707-2711 (2006).
    [CrossRef] [PubMed]
  2. Y. Cui and C. M. Lieber, "Functional Nanoscale Electronic devices assembled using Silicon Nanowire Building Blocks," Science 291, 851-853 (2001).
    [CrossRef] [PubMed]
  3. D. J. Sirbuly, M. Law, H. Yan, and P. Yang, "Semiconductor Nanowires for Subwavelength Photonics Integration," J. Phys. Chem. B 109, 15190-15213 (2005).
    [CrossRef]
  4. D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, "Optical routing and sensing with nanowire assemblies," Proc. Natl. Acad. Sci. USA 102, 7800-7805 (2005).
    [CrossRef] [PubMed]
  5. P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, "Electricfield assisted assembly and alignment of metallic nanowires," Appl. Phys. Lett. 77, 1399-1401 (2000).
    [CrossRef]
  6. B. Messer, J. H. Song, and P. Yang, "Microchannel Networks for Nanowire Patterning," J. Am. Chem. Soc. 122, 10232-10233 (2000).
    [CrossRef]
  7. T. Yu, F.-C. Cheong, and C.-H. Sow, "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
    [CrossRef]
  8. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, "Manipulation and assembly of nanowires with holographic optical traps," Opt. Express 13, 8906-8912 (2005).
    [CrossRef] [PubMed]
  9. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nat. Mater. 5, 97-101 (2006).
    [CrossRef]
  10. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  11. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  12. S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules," Science 271, 795-799 (1996).
    [CrossRef] [PubMed]
  13. D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75, 2960-2970 (2004).
    [CrossRef]
  14. K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by "Multiple" Optical Traps Created by a Single Fast Scanning Trap Integrated With the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
    [CrossRef] [PubMed]
  15. R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, "Resonance enhancement of optical second harmonic generation in a ZnO nanowire," Appl. Phys. Lett. 88, 181501 (2006).
    [CrossRef]
  16. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," Adv. Mater. 13, 113-116 (2001).
    [CrossRef]
  17. C. M. van Kats, P. M. Johnson, J. E. A. M. van den Meerakker, and A. van Blaaderen, "Synthesis of Monodisperse High-Aspect-Ratio Colloidal Silicon and Silica Rods," Langmuir 20, 11201-11207 (2004).
    [CrossRef] [PubMed]
  18. J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, "Patterning surfaces with colloidal particles using optical tweezers," Appl. Phys. Lett. 80, 4828-4830 (2002).
    [CrossRef]
  19. K. D. Bonin, B. Kourmanov, and T. G. Walker, "Light torque nanocontrol, nanomotors and nanorockers," Opt. Express 10, 984-989 (2002).
    [PubMed]
  20. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical application and measurement of torque on microparticles of isotropic nonabsorbing material," Phys. Rev. A 68, 033802 (2003).
    [CrossRef]
  21. A. Rohrbach, "Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory," Phys. Rev. Lett. 95, 168102 (2005).
    [CrossRef] [PubMed]

2006 (3)

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional Laser Emission from the end Facets of a ZnO Nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nat. Mater. 5, 97-101 (2006).
[CrossRef]

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, "Resonance enhancement of optical second harmonic generation in a ZnO nanowire," Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

2005 (4)

R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, "Manipulation and assembly of nanowires with holographic optical traps," Opt. Express 13, 8906-8912 (2005).
[CrossRef] [PubMed]

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, "Semiconductor Nanowires for Subwavelength Photonics Integration," J. Phys. Chem. B 109, 15190-15213 (2005).
[CrossRef]

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, "Optical routing and sensing with nanowire assemblies," Proc. Natl. Acad. Sci. USA 102, 7800-7805 (2005).
[CrossRef] [PubMed]

A. Rohrbach, "Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory," Phys. Rev. Lett. 95, 168102 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Yu, F.-C. Cheong, and C.-H. Sow, "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
[CrossRef]

C. M. van Kats, P. M. Johnson, J. E. A. M. van den Meerakker, and A. van Blaaderen, "Synthesis of Monodisperse High-Aspect-Ratio Colloidal Silicon and Silica Rods," Langmuir 20, 11201-11207 (2004).
[CrossRef] [PubMed]

D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75, 2960-2970 (2004).
[CrossRef]

2003 (1)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical application and measurement of torque on microparticles of isotropic nonabsorbing material," Phys. Rev. A 68, 033802 (2003).
[CrossRef]

2002 (2)

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, "Patterning surfaces with colloidal particles using optical tweezers," Appl. Phys. Lett. 80, 4828-4830 (2002).
[CrossRef]

K. D. Bonin, B. Kourmanov, and T. G. Walker, "Light torque nanocontrol, nanomotors and nanorockers," Opt. Express 10, 984-989 (2002).
[PubMed]

2001 (2)

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Y. Cui and C. M. Lieber, "Functional Nanoscale Electronic devices assembled using Silicon Nanowire Building Blocks," Science 291, 851-853 (2001).
[CrossRef] [PubMed]

2000 (2)

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, "Electricfield assisted assembly and alignment of metallic nanowires," Appl. Phys. Lett. 77, 1399-1401 (2000).
[CrossRef]

B. Messer, J. H. Song, and P. Yang, "Microchannel Networks for Nanowire Patterning," J. Am. Chem. Soc. 122, 10232-10233 (2000).
[CrossRef]

1996 (1)

S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules," Science 271, 795-799 (1996).
[CrossRef] [PubMed]

1993 (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by "Multiple" Optical Traps Created by a Single Fast Scanning Trap Integrated With the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
[CrossRef] [PubMed]

1986 (1)

1970 (1)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Adv. Mater. (1)

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, "Electricfield assisted assembly and alignment of metallic nanowires," Appl. Phys. Lett. 77, 1399-1401 (2000).
[CrossRef]

J. P. Hoogenboom, D. L. J. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, "Patterning surfaces with colloidal particles using optical tweezers," Appl. Phys. Lett. 80, 4828-4830 (2002).
[CrossRef]

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, "Resonance enhancement of optical second harmonic generation in a ZnO nanowire," Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Cytometry (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by "Multiple" Optical Traps Created by a Single Fast Scanning Trap Integrated With the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

B. Messer, J. H. Song, and P. Yang, "Microchannel Networks for Nanowire Patterning," J. Am. Chem. Soc. 122, 10232-10233 (2000).
[CrossRef]

J. Phys. Chem. B (1)

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, "Semiconductor Nanowires for Subwavelength Photonics Integration," J. Phys. Chem. B 109, 15190-15213 (2005).
[CrossRef]

Langmuir (1)

C. M. van Kats, P. M. Johnson, J. E. A. M. van den Meerakker, and A. van Blaaderen, "Synthesis of Monodisperse High-Aspect-Ratio Colloidal Silicon and Silica Rods," Langmuir 20, 11201-11207 (2004).
[CrossRef] [PubMed]

Nano Lett. (1)

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional Laser Emission from the end Facets of a ZnO Nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

T. Yu, F.-C. Cheong, and C.-H. Sow, "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
[CrossRef]

Nat. Mater. (1)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nat. Mater. 5, 97-101 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical application and measurement of torque on microparticles of isotropic nonabsorbing material," Phys. Rev. A 68, 033802 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

A. Rohrbach, "Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory," Phys. Rev. Lett. 95, 168102 (2005).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, "Optical routing and sensing with nanowire assemblies," Proc. Natl. Acad. Sci. USA 102, 7800-7805 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75, 2960-2970 (2004).
[CrossRef]

Science (2)

S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules," Science 271, 795-799 (1996).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, "Functional Nanoscale Electronic devices assembled using Silicon Nanowire Building Blocks," Science 291, 851-853 (2001).
[CrossRef] [PubMed]

Supplementary Material (6)

» Media 1: AVI (2052 KB)     
» Media 2: AVI (2622 KB)     
» Media 3: AVI (2503 KB)     
» Media 4: AVI (13105 KB)     
» Media 5: AVI (1268 KB)     
» Media 6: AVI (8840 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the counter-propagating optical tweezers setup. (b-e) Alignment and rotation of the counter-propagating traps. (b) The inverted beam line trap (○) is positioned left of the center of the frame, with its mirror image at the top right. (c) The upright beam line trap (×) is also positioned left of the center of the frame, with its mirror image at the bottom right. (The mirror symmetry is left-to-right.) In (d) the traps are shown superimposed on each other, forming the counter-propagating traps (⊗). (e) The counterpropagating traps can be moved arbitrarily using the AODs, and are here depicted rotating in an anti-clockwise direction.

Fig. 2.
Fig. 2.

A sequence of microscopy images of the counter-propagating traps rotating through 90° in 10° steps (not all steps shown). The counter-propagating line trap (on the left), which consists of 9 individual traps, rotates in an anti-clockwise direction, with the mirror images of the line trap rotating in a clockwise direction (3.4 MB movie). The upright traps are directly imaged, while the inverted traps are visible due to light reflected at the glass-medium interface in the sample. The top images show the schematic representation of the rotating counter-propagating (⊗) line trap (with four traps per line shown). (○) indicates inverted traps and (×) indicates upright traps. Scale bar is 5µm. [Media 1]

Fig. 3.
Fig. 3.

A sketch showing a nanowire trapped in counter-propagating traps. (a) The nanowire is trapped at the bottom of the sample cell. Because it has the same sign of surface charge (negative) as the cell wall, it does not stick to the wall and can be lifted from the bottom of the cell (by lowering the piezo stage) and moved in the xy plane (by moving the motorized actuators) or even rotated (see Figs. 2 and 4). (b) The top surface of the cell and the silica particles deposited onto it, have been coated with PAH to give them a positive charge. When pressed against the top surface the nanowire will stick through electrostatic interactions. Here the nanowire is shown forming a bridge between two spheres (see Fig. 8).

Fig. 4.
Fig. 4.

A 6-µm-long ZnO nanowire trapped in a counter-propagating line trap (2.6 MB movie). (a) The nanowire is caught in the counter-propagating trap at the bottom of the ~20µm deep cell. (b) Three-dimensionally trapped, the nanowire is lifted ~10µm off the bottom of the cell. (c-k) The nanowire is rotated through 90° in steps of 10° (see also Fig. 1). (l) Whilst still trapped the nanowire is lowered back to the bottom of the cell, where it is pushed out of focus by the glass. Scale bar is 7µm. [Media 2]

Fig. 5.
Fig. 5.

(a–d) A Si nanowire is pressed against the bottom coverslip and rotated through 90o and back again, with the majority of the laser power through the upright trap. (e) The trap is raised from the bottom cover slip - the nanowire is seen to go out of focus. The balance of the traps is readjusted between e and f and the nanowire jumps (almost) back into focus. (g–i) The nanowire is raised to the top of the cell (about 10 microns) and is pressed against the top cover slip. As the nanowire is rotated it pops out of the trap (i). Scale bar is 5µm.

Fig. 6.
Fig. 6.

(a) A ZnO nanowire stuck at one end to previously deposited poly(allylamine hydrochloride) (PAH)-coated silica particles (diameter~1.2µm). (b) The other end is resting loosely upon a second nanowire that is bridging two islands of silica particles. By trapping the free end of the nanowire in an individual counter-propagating trap it was possible to drag the nanowire until it formed a right angle with the second nanowire (c). Turning up the laser power on the inverted beam trap resulted in the free end of the nanowire sticking to the bridging nanowire. The wire did not move after the laser was turned off. (Short version movie is 2.5 MB and long version movie is 13 MB.) Scale bar is 5µm. [Media 3]

Fig. 7.
Fig. 7.

This sequence of images shows a ZnO nanowire first being rotated in a clockwise direction in a line trap. The wire was positioned under the correct angle, to then be lifted to the top cover slip of the cell where the negatively charged nanowire was stuck to the positively charged surface of silica particles, bridging two separate islands of particles. (Short version movie is 1.3 MB and long version movie is 14 MB.) Scale bar is 5µm. [Media 5]

Fig. 8.
Fig. 8.

The fin(abl s)tructure constructed by brid(gci)ng PAH-coated silica particles with ZnO nanowires, imaged in brightfield microscopy. Scale bar is 7µm.

Metrics