Abstract

Two low-glass transition photorefractive polymer composites were investigated in a symmetric reflection geometry. The holograms recorded in 105 µm thick devices have reached diffraction efficiencies as high as 60%. Unlike the gratings recorded in transmission geometry, holograms recorded in reflection geometry showed high angular selectivity and the Bragg condition was observed to be sensitive to the magnitude of the external bias field. We attribute this effect to poling-induced birefringence and give a theoretical analysis to describe the observed results.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
    [CrossRef] [PubMed]
  2. S. Wu, Q. Song, A. Mayers, D. A. Gregory, and F. T. S. Yu, "Reconfigurable interconnections using photorefractive holograms," Appl. Opt. 29, 1118-1125 (1990).
    [CrossRef] [PubMed]
  3. R. T. B. James, C. Wah, K. Iizuka, and H. Shimotahira, "Optically tunable optical filter," Appl. Opt. 34, 8230 (1995).
    [CrossRef] [PubMed]
  4. G. Li, M. Eralp, J. Thomas, S. Tay, A. Schülzgen, R. A. Norwood, and N. Peyghambarian, "All-optical dynamic correction of distorted communication signals using a photorefractive polymeric hologram," Appl. Phys. Lett. 86, 161103 (2005).
    [CrossRef] [PubMed]
  5. B. Kippelen and N. Peyghambarian, in Polymers for Photonic Applications II, (Springer-Verlag: Berlin, 2003) Vol. 161, Chap. 2.
  6. K. Meerholz, B. L. Volodin, B. K. Sandalphon, and N. Peyghambarian, "Peptide oligomers for holographic data storage," Nature 371, 497-500 (1994).
    [CrossRef] [PubMed]
  7. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, "High-speed photorefractive polymer composites," Appl. Phys. Lett. 73, 1490 (1998).
    [CrossRef] [PubMed]
  8. J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, "Direct observation of orientation limit in a fast photorefractive polymer composite," Appl. Phys. Lett. 74, 2253 (1999).
    [CrossRef]
  9. M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, "High-performance photorefractive polymer operating at 975 nm," Appl. Phys. Lett. 85, 1095 (2004).
    [CrossRef] [PubMed]
  10. S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Appl. Phys. Lett 87, 171105 (2005).
    [CrossRef] [PubMed]
  11. O-P. Kwon, G. Montemezzani, P. Günter, and S-H. Lee, "High-gain photorefractive reflection gratings in layered photoconductive polymers," Appl. Phys. Lett. 84, 43-45 (2004).
    [CrossRef]
  12. F. Gallego-Gomez, M. Salvador, S. Köber, and K. Meerholz, "High-performance reflection gratings in photorefractive polymers," Appl. Phys. Lett 90, 251113 1-3 (2007)
    [CrossRef] [PubMed]
  13. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally enhanced photorefractive effect in polymers," J. Opt. Soc. Am. B 11, 320 (1994).
    [CrossRef] [PubMed]
  14. J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Adv. Mater. 16, 2032 (2004).
    [CrossRef] [PubMed]
  15. E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, J. Mater. Chem. 9, 2251 (1999).
    [CrossRef] [PubMed]
  16. N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals," Ferroelectrics 22, 949 (1979).
    [PubMed]
  17. C. Fuentes-Hernandez, J. Thomas, R. Termine, G. Meredith, S. Barlow, G. Walker, K. Cammack, K. Matsumoto, M. Yamamoto, S. R. Marder, B. Kippelen, and N. Peyghambarian, "Video-rate compatible photorefractive polymers with stable dynamic properties under continuous operation," Appl. Phys. Lett. 85, 1877 (2004).
    [CrossRef] [PubMed]
  18. W.-J. Joo, H. Chun, I. K. Moon, and N. Kim, "Dependence of the Bragg condition on an external electric field for a Polymeric Photorefractive Material," Appl. Opt. 42, 3271 (2003).
    [CrossRef] [PubMed]
  19. D. M. Burland, R. D. Miller, and C. A. Walsh, "Second-order nonlinearity in poled-polymer systems," Chem. Rev. 94, 31 (1994).
    [CrossRef] [PubMed]
  20. H. Kogelnik, "Coupled-wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909 (1969).

2005 (2)

G. Li, M. Eralp, J. Thomas, S. Tay, A. Schülzgen, R. A. Norwood, and N. Peyghambarian, "All-optical dynamic correction of distorted communication signals using a photorefractive polymeric hologram," Appl. Phys. Lett. 86, 161103 (2005).
[CrossRef] [PubMed]

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Appl. Phys. Lett 87, 171105 (2005).
[CrossRef] [PubMed]

2004 (4)

O-P. Kwon, G. Montemezzani, P. Günter, and S-H. Lee, "High-gain photorefractive reflection gratings in layered photoconductive polymers," Appl. Phys. Lett. 84, 43-45 (2004).
[CrossRef]

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Adv. Mater. 16, 2032 (2004).
[CrossRef] [PubMed]

C. Fuentes-Hernandez, J. Thomas, R. Termine, G. Meredith, S. Barlow, G. Walker, K. Cammack, K. Matsumoto, M. Yamamoto, S. R. Marder, B. Kippelen, and N. Peyghambarian, "Video-rate compatible photorefractive polymers with stable dynamic properties under continuous operation," Appl. Phys. Lett. 85, 1877 (2004).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, "High-performance photorefractive polymer operating at 975 nm," Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef] [PubMed]

2003 (1)

1999 (2)

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, J. Mater. Chem. 9, 2251 (1999).
[CrossRef] [PubMed]

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, "Direct observation of orientation limit in a fast photorefractive polymer composite," Appl. Phys. Lett. 74, 2253 (1999).
[CrossRef]

1998 (1)

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, "High-speed photorefractive polymer composites," Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef] [PubMed]

1995 (2)

1994 (3)

D. M. Burland, R. D. Miller, and C. A. Walsh, "Second-order nonlinearity in poled-polymer systems," Chem. Rev. 94, 31 (1994).
[CrossRef] [PubMed]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally enhanced photorefractive effect in polymers," J. Opt. Soc. Am. B 11, 320 (1994).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. K. Sandalphon, and N. Peyghambarian, "Peptide oligomers for holographic data storage," Nature 371, 497-500 (1994).
[CrossRef] [PubMed]

1990 (1)

1979 (1)

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals," Ferroelectrics 22, 949 (1979).
[PubMed]

1969 (1)

H. Kogelnik, "Coupled-wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909 (1969).

Adv. Mater. (1)

J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Adv. Mater. 16, 2032 (2004).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett (1)

S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Appl. Phys. Lett 87, 171105 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

O-P. Kwon, G. Montemezzani, P. Günter, and S-H. Lee, "High-gain photorefractive reflection gratings in layered photoconductive polymers," Appl. Phys. Lett. 84, 43-45 (2004).
[CrossRef]

G. Li, M. Eralp, J. Thomas, S. Tay, A. Schülzgen, R. A. Norwood, and N. Peyghambarian, "All-optical dynamic correction of distorted communication signals using a photorefractive polymeric hologram," Appl. Phys. Lett. 86, 161103 (2005).
[CrossRef] [PubMed]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, "High-speed photorefractive polymer composites," Appl. Phys. Lett. 73, 1490 (1998).
[CrossRef] [PubMed]

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, "Direct observation of orientation limit in a fast photorefractive polymer composite," Appl. Phys. Lett. 74, 2253 (1999).
[CrossRef]

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, "High-performance photorefractive polymer operating at 975 nm," Appl. Phys. Lett. 85, 1095 (2004).
[CrossRef] [PubMed]

C. Fuentes-Hernandez, J. Thomas, R. Termine, G. Meredith, S. Barlow, G. Walker, K. Cammack, K. Matsumoto, M. Yamamoto, S. R. Marder, B. Kippelen, and N. Peyghambarian, "Video-rate compatible photorefractive polymers with stable dynamic properties under continuous operation," Appl. Phys. Lett. 85, 1877 (2004).
[CrossRef] [PubMed]

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled-wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909 (1969).

Chem. Rev. (1)

D. M. Burland, R. D. Miller, and C. A. Walsh, "Second-order nonlinearity in poled-polymer systems," Chem. Rev. 94, 31 (1994).
[CrossRef] [PubMed]

Ferroelectrics (1)

N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals," Ferroelectrics 22, 949 (1979).
[PubMed]

J. Mater. Chem. (1)

E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, J. Mater. Chem. 9, 2251 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Meerholz, B. L. Volodin, B. K. Sandalphon, and N. Peyghambarian, "Peptide oligomers for holographic data storage," Nature 371, 497-500 (1994).
[CrossRef] [PubMed]

Sci. Am. (1)

D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
[CrossRef] [PubMed]

Other (2)

F. Gallego-Gomez, M. Salvador, S. Köber, and K. Meerholz, "High-performance reflection gratings in photorefractive polymers," Appl. Phys. Lett 90, 251113 1-3 (2007)
[CrossRef] [PubMed]

B. Kippelen and N. Peyghambarian, in Polymers for Photonic Applications II, (Springer-Verlag: Berlin, 2003) Vol. 161, Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of reflection geometry used in DFWM experiments. In the standard symmetric reflection geometry θ 1=θ 2=is 72°, and φ=0.

Fig. 2.
Fig. 2.

Variation of diffraction efficiency with respect to the magnitude of electric field for a set of readout (p-polarized) offset angles in case of composition C1 (first graph) and C2 (second graph) including the fits to the Kogelnik theory. As the offset angle is varied, the diffraction efficiency peaks at different field magnitudes. The dashed line in first graph is a calculation for the case with no birefringence.

Fig. 3.
Fig. 3.

The intensity readings from a transmission ellipsometry measurement for composition C1 (circles) and composition C2 (squares). The lines are fits based on Eq. (7). Notice that the C1 composition has a larger birefringence than the C2 composition, therefore the Bragg mismatch effect due to poling is more pronounced in DFWM experiments.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η = tanh 2 [ π Δ n d λ cos α 1 cos α 2 e ̂ i · e ̂ d ] ;
Δ n X ( 1 ) = Δ n Y ( 1 ) = 1 2 Δ n Z ( 1 ) E 0 2 ;
Δ α ( E 0 , α 0 ) = tan ( α 1 ) n C 0 E 0 2 + α 0 ;
c i ( E 0 , α 0 ) = cos [ α 1 + Δ α ( E 0 , α 0 ) ]
c d ( E 0 , α 0 ) = cos [ α 1 + Δ α ( E 0 , α 0 ) ] λ [ n + Δ n BF ( E 0 ) ] Λ cos φ
ν = i π Δ n d λ c i c d e ̂ i · e ̂ d
ξ = Δ α K d sin ( φ α 1 ) 2 c d
η = 1 [ 1 + ( 1 ξ 2 ν 2 ) sinh 2 ( ν 2 ξ 2 ) ]
I ( E 0 ) = sin 2 [ π Δ n BF ( E 0 ) d λ cos ( α ) ] ;

Metrics