Abstract

We report the manipulation of 4–5 µm diameter polymer microspheres floating in water using optical tweezers (OT) and a haptic device (i.e. force-reflecting robotic arm). Trapped microspheres are steered using the end-effector of a haptic device that is virtually coupled to an XYZ piezo-scanner controlling the movements of the fluid bed. To help with the manipulations, we first calculate a collision-free path for the particle and then display artificial guidance forces to the user through the haptic device to keep him/her on this path during steering. Experiments conducted with 8 subjects show almost two-fold improvements in the average path error and average speed under the guidance of haptic feedback.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 10, 288-290 (1986).
    [CrossRef]
  2. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  3. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nature 5, 97-101 (2006).
    [CrossRef]
  4. I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Forces," Presence: Teleoperators and Virtual Environments, in press (arxiv:0707.3325) (2007).
  5. C. Basdogan, S. D. Laycock, A. M. Day, V. Patoglu, and R. B. Gillespie, "3-Dof Haptic Rendering," in Haptic Rendering, M. C. Lin, and M. Otaduy, eds., (A. K. Peters, 2007).
  6. M. A. Srinivasan, and C. Basdogan, "Haptics in Virtual Environments: Taxonomy, Research Status, and Challenges," Comput. Graph. 21, 393-404 (1997).
    [CrossRef]
  7. F. Arai, M. Ogawa, T. Mizuno, T. Fukuda, K. Morishima, and K. Horio, "Teleoperated laser manipulator with dielectrophoretic assistance for selective separation of a microbe," Proceedings of the IEEE Int. Conf. on Intelligent Robots and Systems, 1872-1877 (1999).
  8. F. Arai, M. Ogawa, and T. Fukuda, "Bilateral control system for laser micromanipulation by force feedback," Adv. Rob. 14, 381-383 (2000).
    [CrossRef]
  9. G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006).
    [CrossRef] [PubMed]
  10. G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, "Optically controlled grippers for manipulating micron-sized particles," New J. Phys. 9, 14 (2007).
    [CrossRef]
  11. O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," Int. J. Robot. Res. 5, 90-98 (1986).
    [CrossRef]
  12. L. B. Rosenberg, "Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation," Proc. of IEEE Annual Virtual Reality International Symposium, 76-82 (1993).
    [CrossRef]

2007 (1)

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, "Optically controlled grippers for manipulating micron-sized particles," New J. Phys. 9, 14 (2007).
[CrossRef]

2006 (2)

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nature 5, 97-101 (2006).
[CrossRef]

2003 (1)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2000 (1)

F. Arai, M. Ogawa, and T. Fukuda, "Bilateral control system for laser micromanipulation by force feedback," Adv. Rob. 14, 381-383 (2000).
[CrossRef]

1997 (1)

M. A. Srinivasan, and C. Basdogan, "Haptics in Virtual Environments: Taxonomy, Research Status, and Challenges," Comput. Graph. 21, 393-404 (1997).
[CrossRef]

1986 (2)

Adv. Rob. (1)

F. Arai, M. Ogawa, and T. Fukuda, "Bilateral control system for laser micromanipulation by force feedback," Adv. Rob. 14, 381-383 (2000).
[CrossRef]

Comput. Graph. (1)

M. A. Srinivasan, and C. Basdogan, "Haptics in Virtual Environments: Taxonomy, Research Status, and Challenges," Comput. Graph. 21, 393-404 (1997).
[CrossRef]

Int. J. Robot. Res. (1)

O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," Int. J. Robot. Res. 5, 90-98 (1986).
[CrossRef]

Nature (2)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nature 5, 97-101 (2006).
[CrossRef]

New J. Phys. (1)

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, "Optically controlled grippers for manipulating micron-sized particles," New J. Phys. 9, 14 (2007).
[CrossRef]

Opt. Express (1)

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (4)

L. B. Rosenberg, "Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation," Proc. of IEEE Annual Virtual Reality International Symposium, 76-82 (1993).
[CrossRef]

F. Arai, M. Ogawa, T. Mizuno, T. Fukuda, K. Morishima, and K. Horio, "Teleoperated laser manipulator with dielectrophoretic assistance for selective separation of a microbe," Proceedings of the IEEE Int. Conf. on Intelligent Robots and Systems, 1872-1877 (1999).

I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Forces," Presence: Teleoperators and Virtual Environments, in press (arxiv:0707.3325) (2007).

C. Basdogan, S. D. Laycock, A. M. Day, V. Patoglu, and R. B. Gillespie, "3-Dof Haptic Rendering," in Haptic Rendering, M. C. Lin, and M. Otaduy, eds., (A. K. Peters, 2007).

Supplementary Material (1)

» Media 1: AVI (3401 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Our experimental setup for optical manipulation of microspheres using haptic feedback.

Fig. 2.
Fig. 2.

(3.32 MB) Movie of the virtual scene (left) and camera image (right) viewed by the user during two consecutive manipulation tasks. Both visual and haptic feedbacks were displayed to the user during these manipulation tasks. Yellow, green and red spheres in the virtual scene denote the trapped particle, obstacles, and the goal point respectively. The collision-free path is shown in blue in the movie. The dimensions of the camera image are 69 µm×53 µm. [Media 1]

Fig. 3.
Fig. 3.

The results of the user study performed with 8 human subjects show that manipulating microspheres with haptic and visual feedback together (V+H) is significantly better than manipulating with visual feedback only (V). Almost two-fold improvements are seen in the (a) average path error and (b) average speed during optical manipulations (p<0.05).

Metrics