Abstract

The effect of coupled mode surface plasmon polaritons (SPPs) on the active emission of a nanostructure grating with organic semiconductor material, Alq3, on the surface was investigated in this study. We report surface plasmon grating coupled emission (SPGCE) from excited organic layer on metal grating in both organic/metal (2-Layer) and organic/metal/organic/metal (4-Layer) structures. The dispersion relation was obtained from angle-resolved photoluminescence measurement. The resultant emission intensity can have up to 6 times enhancement on the 4-Layer device and the Full-Width Half-Maximum (FWHM) is less than 50 nm. The combination of SPPs on organic/metal interface allows specific directional emission and color appearance of Alq3 fluorophores. Potential applications of such an active plasmonics with enhanced resonant energy emission due to interactions on the organic/metal nano-grating as biosensor were presented and discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).
    [PubMed]
  2. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).
    [PubMed]
  3. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
    [CrossRef] [PubMed]
  4. E. Kretschmann, "The determination of the Optical Constants of Metals by Excitation of Surface Plasmons," Z. Phys. 241, 313-324 (1971).
    [CrossRef] [PubMed]
  5. N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
    [CrossRef]
  6. R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film." Phys. Rev. Lett. 30, 2838-2841 (1986).
    [CrossRef] [PubMed]
  7. D. K. Gifford and D. G. Hall, "Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling," Appl. Phys. Lett. 81, 4315-4317 (2002).
    [CrossRef] [PubMed]
  8. S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express 12, 3673-3685 (2004).
    [CrossRef]
  9. J. Feng, T. Okamoto, J. Simonen, and S. Kawata, "Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons," Appl. Phys. Lett. 90, 081106 (2007).
    [CrossRef] [PubMed]
  10. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, "Directional surface Plasmon-coupled emission: a new method for high sensitivity detection." Biochem. Biophys. Res. Commun. 307, 435-439 (2003).
    [CrossRef] [PubMed]
  11. I. Gryczynski, J. Malicka, Z. Grycznski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface Plasmon-coupled directional emission." Anal. Biochem. 324, 170-182 (2004).
    [CrossRef]
  12. T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. akamatsu, "Emission light properties from Adrhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations," Mater. Res. Soc. Symp. 660, 1-6 (2001).
    [PubMed]
  13. K. Shinbo, S. Toyoshima, Y. Ohdaira, K. Kato, and F. Kaneko, "Surface plasmon emission light property due to molecular luminescence and molecular interaction," J. Appl. Phys. 44, 599-603 (2005).
    [PubMed]
  14. G. Winter and W. L. Barnes, "Emission of light through thin silver films via near-field coupling to surface plasmon polaritons," Appl. Phys. Lett. 88, 051109 (2006).
    [CrossRef] [PubMed]
  15. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005).
    [CrossRef] [PubMed]
  16. S. C. Kitson, W. L. Barnes, J. R. Sambles, "Photoluminescence from dye molecules on silver gratings," Opt. Commun. 122, 147-154 (1996).
    [CrossRef] [PubMed]
  17. J. Kalkman, C. Strohhofer, B. Gralak, A. Polman, "Surface plasmon polariton modified emission of erbium in a metallodielectric grating," Appl. Phys. Lett. 83, 30-32 (2003).
    [CrossRef] [PubMed]
  18. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006).
    [CrossRef] [PubMed]
  19. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and. A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
    [CrossRef] [PubMed]
  20. I. Pockrand and A. Brillante, "Nonradiative decay of excited molecles near a metal surface," Chem. Phys. Lett. 69, 499-504 (1980).
    [CrossRef]
  21. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, "Readiative decay Engineering 2: effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer," Anal. Biochem. 301, 261-277 (2002).
    [CrossRef] [PubMed]
  22. C.-W. Lin, K.-P. Chen, S.-M. Lin, C.-K. Lee," Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor," Sens. Actuators B 113, 169-176 (2006).
    [CrossRef]
  23. C.-W. Lin, K.-P. Chen, M.-C. Su, T.-C. Hsiao, S.-S. Lee, S.-M. Lin, X.-J Shi, C.-K. Lee, "Admittance loci design method for multilayer surface plasmon resonance devices," Sens. Actuators B 117, 219-229 (2006).
    [CrossRef] [PubMed]
  24. C.-W. Lin, K.-P. Chen, M.-C. Su, C.-K. Lee, C.-C. Yang, "Bio-plasmonics: Nano/micro structure of surface plasmon resonance devices for biomedicine," Opt. Quantum Electron 37, 1423-1437 (2005).
    [CrossRef] [PubMed]
  25. J. Homola, I. Koudela, S. S. Yee," Surface plasmon resonance sensors based on diffraction grations and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
    [CrossRef] [PubMed]
  26. D. Sarid, "Long-range Surface-Plasma Waves on very Thin Metal Films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  27. P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004).
    [CrossRef] [PubMed]

2007 (1)

J. Feng, T. Okamoto, J. Simonen, and S. Kawata, "Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons," Appl. Phys. Lett. 90, 081106 (2007).
[CrossRef] [PubMed]

2006 (4)

G. Winter and W. L. Barnes, "Emission of light through thin silver films via near-field coupling to surface plasmon polaritons," Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef] [PubMed]

Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006).
[CrossRef] [PubMed]

C.-W. Lin, K.-P. Chen, S.-M. Lin, C.-K. Lee," Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor," Sens. Actuators B 113, 169-176 (2006).
[CrossRef]

C.-W. Lin, K.-P. Chen, M.-C. Su, T.-C. Hsiao, S.-S. Lee, S.-M. Lin, X.-J Shi, C.-K. Lee, "Admittance loci design method for multilayer surface plasmon resonance devices," Sens. Actuators B 117, 219-229 (2006).
[CrossRef] [PubMed]

2005 (3)

C.-W. Lin, K.-P. Chen, M.-C. Su, C.-K. Lee, C.-C. Yang, "Bio-plasmonics: Nano/micro structure of surface plasmon resonance devices for biomedicine," Opt. Quantum Electron 37, 1423-1437 (2005).
[CrossRef] [PubMed]

K. Shinbo, S. Toyoshima, Y. Ohdaira, K. Kato, and F. Kaneko, "Surface plasmon emission light property due to molecular luminescence and molecular interaction," J. Appl. Phys. 44, 599-603 (2005).
[PubMed]

J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005).
[CrossRef] [PubMed]

2004 (3)

S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express 12, 3673-3685 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Grycznski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface Plasmon-coupled directional emission." Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004).
[CrossRef] [PubMed]

2003 (4)

J. Kalkman, C. Strohhofer, B. Gralak, A. Polman, "Surface plasmon polariton modified emission of erbium in a metallodielectric grating," Appl. Phys. Lett. 83, 30-32 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and. A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, "Directional surface Plasmon-coupled emission: a new method for high sensitivity detection." Biochem. Biophys. Res. Commun. 307, 435-439 (2003).
[CrossRef] [PubMed]

N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef]

2002 (2)

D. K. Gifford and D. G. Hall, "Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling," Appl. Phys. Lett. 81, 4315-4317 (2002).
[CrossRef] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, "Readiative decay Engineering 2: effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer," Anal. Biochem. 301, 261-277 (2002).
[CrossRef] [PubMed]

1999 (1)

J. Homola, I. Koudela, S. S. Yee," Surface plasmon resonance sensors based on diffraction grations and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
[CrossRef] [PubMed]

1996 (1)

S. C. Kitson, W. L. Barnes, J. R. Sambles, "Photoluminescence from dye molecules on silver gratings," Opt. Commun. 122, 147-154 (1996).
[CrossRef] [PubMed]

1986 (1)

R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film." Phys. Rev. Lett. 30, 2838-2841 (1986).
[CrossRef] [PubMed]

1981 (1)

D. Sarid, "Long-range Surface-Plasma Waves on very Thin Metal Films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

1980 (1)

I. Pockrand and A. Brillante, "Nonradiative decay of excited molecles near a metal surface," Chem. Phys. Lett. 69, 499-504 (1980).
[CrossRef]

1971 (1)

E. Kretschmann, "The determination of the Optical Constants of Metals by Excitation of Surface Plasmons," Z. Phys. 241, 313-324 (1971).
[CrossRef] [PubMed]

1968 (1)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef] [PubMed]

1902 (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).
[PubMed]

Anal. Biochem. (2)

I. Gryczynski, J. Malicka, Z. Grycznski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface Plasmon-coupled directional emission." Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, "Readiative decay Engineering 2: effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer," Anal. Biochem. 301, 261-277 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

G. Winter and W. L. Barnes, "Emission of light through thin silver films via near-field coupling to surface plasmon polaritons," Appl. Phys. Lett. 88, 051109 (2006).
[CrossRef] [PubMed]

J. Kalkman, C. Strohhofer, B. Gralak, A. Polman, "Surface plasmon polariton modified emission of erbium in a metallodielectric grating," Appl. Phys. Lett. 83, 30-32 (2003).
[CrossRef] [PubMed]

D. K. Gifford and D. G. Hall, "Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling," Appl. Phys. Lett. 81, 4315-4317 (2002).
[CrossRef] [PubMed]

J. Feng, T. Okamoto, J. Simonen, and S. Kawata, "Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons," Appl. Phys. Lett. 90, 081106 (2007).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, "Directional surface Plasmon-coupled emission: a new method for high sensitivity detection." Biochem. Biophys. Res. Commun. 307, 435-439 (2003).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

I. Pockrand and A. Brillante, "Nonradiative decay of excited molecles near a metal surface," Chem. Phys. Lett. 69, 499-504 (1980).
[CrossRef]

J. Appl. Phys. (1)

K. Shinbo, S. Toyoshima, Y. Ohdaira, K. Kato, and F. Kaneko, "Surface plasmon emission light property due to molecular luminescence and molecular interaction," J. Appl. Phys. 44, 599-603 (2005).
[PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and. A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. C. Kitson, W. L. Barnes, J. R. Sambles, "Photoluminescence from dye molecules on silver gratings," Opt. Commun. 122, 147-154 (1996).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Quantum Electron (1)

C.-W. Lin, K.-P. Chen, M.-C. Su, C.-K. Lee, C.-C. Yang, "Bio-plasmonics: Nano/micro structure of surface plasmon resonance devices for biomedicine," Opt. Quantum Electron 37, 1423-1437 (2005).
[CrossRef] [PubMed]

Phil. Mag. (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).
[PubMed]

Phys. Rev. Lett. (2)

R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film." Phys. Rev. Lett. 30, 2838-2841 (1986).
[CrossRef] [PubMed]

D. Sarid, "Long-range Surface-Plasma Waves on very Thin Metal Films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Science (1)

P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004).
[CrossRef] [PubMed]

Sens. Actuators B (3)

J. Homola, I. Koudela, S. S. Yee," Surface plasmon resonance sensors based on diffraction grations and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999).
[CrossRef] [PubMed]

C.-W. Lin, K.-P. Chen, S.-M. Lin, C.-K. Lee," Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor," Sens. Actuators B 113, 169-176 (2006).
[CrossRef]

C.-W. Lin, K.-P. Chen, M.-C. Su, T.-C. Hsiao, S.-S. Lee, S.-M. Lin, X.-J Shi, C.-K. Lee, "Admittance loci design method for multilayer surface plasmon resonance devices," Sens. Actuators B 117, 219-229 (2006).
[CrossRef] [PubMed]

Z. Phys. (2)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef] [PubMed]

E. Kretschmann, "The determination of the Optical Constants of Metals by Excitation of Surface Plasmons," Z. Phys. 241, 313-324 (1971).
[CrossRef] [PubMed]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).
[PubMed]

T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. akamatsu, "Emission light properties from Adrhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations," Mater. Res. Soc. Symp. 660, 1-6 (2001).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SEM images of the gratings cross section, which show the arrangement of a periodically lamellar layer a) 2-layer structure of Alq3/Au and b) 4-layer structure.of (Alq3/Au/Alq3/Au) on top of a 100 nm PR structure.

Fig. 2.
Fig. 2.

Schematic diagram shows the experimental setup for our computer controlled PL spectra measurement system. A spectrometer is used to measure the emission from the top side of the multilayer grating coupler device through an ultra-thin Au film for the investigation of possible enhancement effects.

Fig. 3.
Fig. 3.

Cross section view of a simplified 2-layer active plasmonic model device. The Alq3 molecules in the active layer can provide non-oriented internal light source to generate SPPs on the metal/dielectric interfaces and de-couple through grating structure for detectable radiative emission or non-radiative internal propagation.

Fig. 4.
Fig. 4.

The PL emission obtained from a grating sample having 2-layer and 4-layer structure (grating size: line 400 nm, pitch 800 nm, area size 1.2×1.2mm2). The 4(a) and 4(b) are shows PL 3-D emission image obtained from a grating sample. The dependence of the emission spectra on observation angle (θ) is shown in 4(a) and 4(b) for 2-layer and 4-layer structure, respectively. The 4(c) shows the planar, 2-layer and 4-layer. The emission maximum was about 0° and -3° for 2-layer, 4-layer devices, respectively.

Fig. 5.
Fig. 5.

This shows experimental PL SPGCE diagram in directional emission spectra of pitch 500 nm and 800 nm structures.

Fig. 6.
Fig. 6.

The SP-coupled emission is via a grating mediated by energy transfer of SP tunable-color and FWHM at 2-layer oe-15-18-11608-i001 and 4-layer oe-15-18-11608-i002 grating structure. The 6(a) shows the coupled emission spectrum to 1931 CIE chromaticity diagram, with the coordinates of the spectra and angle. The 6(b) shows the FWHM shifts at different angle.

Fig. 7.
Fig. 7.

The figure give fitting results and theoretical interpretation. 7(a) is Frequency vs. wave vector for the measured data oe-15-18-11608-i003 and fitting data oe-15-18-11608-i004, the theoretical dispersion relation on interface surface Plasmon dispersion relation Au/air oe-15-18-11608-i005, Alq3/Au oe-15-18-11608-i006, Au/water oe-15-18-11608-i007, and the light in vacuum oe-15-18-11608-i008. The data were taken from the sample with 800 nm pitch. The explained that intrinsic Alq3 emission and excitation into the Au/air coupler SP emission angle as shown in 7(b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k = ε d ( k 0 sin ( θ emission ) ± m 2 π Λ ) = k 0 ε Au · ε air ε Au + ε air = k SP ( Au air ) ,
k w = k SP ( Au Alq 3 ) ± m 2 π Λ ,
k SP ( Au Alq 3 ) = k 0 ε Au · ε Alq 3 ε Au + ε Alq 3 ,
k SPP 2 = n d 2 k 0 2 sin 2 θ + ( m 2 π Λ ) 2 ± 2 n d m 2 π Λ k 0 sin θ cos φ

Metrics