Abstract

We present a monolithic single-longitudinal-mode laser based on Nd:GdVO4 and a volume Bragg grating. The laser at 1066 nm had a bandwidth below 40 MHz at a power of 30 mW. With temperature, the laser frequency could be continuously tuned without mode hops over a range of 80 GHz. The demonstrated laser design is very compact and simple and can be used to lock the laser wavelength anywhere in the gain spectrum.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989).
    [CrossRef] [PubMed]
  2. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,” Opt. Express 14, 9284–9292 (2006).
    [CrossRef] [PubMed]
  3. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity: erratum,” Opt. Express 15, 9387 (2007).
    [CrossRef] [PubMed]
  4. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  5. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
    [CrossRef]
  6. B. Volodin, S. Dolgy, E. Melnik, E. Downs, J. Shaw, and V. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Lett. 29, 1891–1893 (2004).
    [CrossRef] [PubMed]
  7. L. S. Meng, B. Nizamov, P. Madasamy, J. K. Brasseur, T. Henshaw, and D. K. Neumann, “High power 7-GHz bandwidth external-cavity diode laser array and its use in optically pumping singlet delta oxygen,” Opt. Express 14, 10469–10474 (2006).
    [CrossRef] [PubMed]
  8. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30, 2281–2283 (2005).
    [CrossRef] [PubMed]
  9. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “ZnGeP2 parametric oscillator pumped by a linewidth narrowed 2 µm source,” Opt. Lett. 31, 1878–1880 (2006).
    [CrossRef] [PubMed]
  10. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,” Opt. Lett. 31, 1663–1665 (2006).
    [CrossRef] [PubMed]
  11. T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31, 229–231 (2006).
    [CrossRef] [PubMed]
  12. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, “Widely tunable Yb:KYW laser with a volume Bragg grating,” Opt. Express 15, 1003–1010 (2007).
    [CrossRef] [PubMed]
  13. Schott AG, “Optical glass data sheets,” http://www.schott.com/optics_devices/english/download/datasheet_all_english.pdf
  14. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M. Jiang, and Y. T. Chow, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002).
    [CrossRef]
  15. P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
    [CrossRef]
  16. J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
    [CrossRef]
  17. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
    [CrossRef]
  18. R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
    [CrossRef]
  19. C. Czeranowsky, “Resonatorinterne Frequenzverdopplung von diodengepumpten Neodym-Lasern mit hohen Ausgangsleistungen im blauen Spektralbereich,” Ph.D. thesis, University of Hamburg, (2002).
  20. D. Budker, S. M. Rochester, and V. V. Yashchuk, “Obtaining frequency markers of variable separation with a spherical mirror Fabry-Perot interferometer,” Rev. Sci. Instrum. 71, 2984–2987 (2000).
    [CrossRef]

2007 (2)

2006 (6)

2005 (2)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30, 2281–2283 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

2002 (1)

2000 (1)

D. Budker, S. M. Rochester, and V. V. Yashchuk, “Obtaining frequency markers of variable separation with a spherical mirror Fabry-Perot interferometer,” Rev. Sci. Instrum. 71, 2984–2987 (2000).
[CrossRef]

1999 (1)

1989 (1)

1985 (1)

Ban, V.

Bass, M.

Brasseur, J. K.

Budker, D.

D. Budker, S. M. Rochester, and V. V. Yashchuk, “Obtaining frequency markers of variable separation with a spherical mirror Fabry-Perot interferometer,” Rev. Sci. Instrum. 71, 2984–2987 (2000).
[CrossRef]

Byer, R. L.

Chow, Y. T.

Chung, T.

Czeranowsky, C.

C. Czeranowsky, “Resonatorinterne Frequenzverdopplung von diodengepumpten Neodym-Lasern mit hohen Ausgangsleistungen im blauen Spektralbereich,” Ph.D. thesis, University of Hamburg, (2002).

Dolgy, S.

Downs, E.

Efimov, O.

George, J.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Glebov, L.

Glebov, L. B.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31, 229–231 (2006).
[CrossRef] [PubMed]

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

Glebova, L.

Glebova, L. N.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Gupta, P. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Hellström, J. E.

Henriksson, M.

Henshaw, T.

Horváth, R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Hu, X.

Jacobsson, B.

Jiang, M.

Kane, T. J.

Larsen, N. B.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Laurell, F.

Lindvold, L. R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Liu, J.

Madasamy, P.

Melnik, E.

Meng, L. S.

Meng, X.

Mooradian, A.

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Nathan, T. P. S.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Nautiyal, A.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Neumann, D. K.

Nizamov, B.

Pasiskevicius, V.

Ranganathan, K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Rapaport, A.

Richardson, K.

Richardson, M. C.

Rochester, S. M.

D. Budker, S. M. Rochester, and V. V. Yashchuk, “Obtaining frequency markers of variable separation with a spherical mirror Fabry-Perot interferometer,” Rev. Sci. Instrum. 71, 2984–2987 (2000).
[CrossRef]

Rotari, E.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Schneider, J. F.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Sevian, A.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

Shao, Z.

Sharma, S. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

Shaw, J.

Smirnov, V.

Smirnov, V. I.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

Tiihonen, M.

Venus, G. B.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

Volodin, B.

Wang, C.

Wang, J.

Werner-Zwanziger, U.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Yashchuk, V. V.

D. Budker, S. M. Rochester, and V. V. Yashchuk, “Obtaining frequency markers of variable separation with a spherical mirror Fabry-Perot interferometer,” Rev. Sci. Instrum. 71, 2984–2987 (2000).
[CrossRef]

Zanotto, E. D.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Zayhowski, J. J.

Zhang, H.

Zhu, L.

Zwanziger, J. W.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77, 81–87 (2003).
[CrossRef]

J. Appl. Phys. (1)

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

J. Micromech. Microeng. (1)

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (7)

Proc. SPIE (1)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Budker, S. M. Rochester, and V. V. Yashchuk, “Obtaining frequency markers of variable separation with a spherical mirror Fabry-Perot interferometer,” Rev. Sci. Instrum. 71, 2984–2987 (2000).
[CrossRef]

Other (2)

Schott AG, “Optical glass data sheets,” http://www.schott.com/optics_devices/english/download/datasheet_all_english.pdf

C. Czeranowsky, “Resonatorinterne Frequenzverdopplung von diodengepumpten Neodym-Lasern mit hohen Ausgangsleistungen im blauen Spektralbereich,” Ph.D. thesis, University of Hamburg, (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Monolithic cavity consisting of a volume Bragg grating, a Nd:GdVO4 crystal and an outcoupling mirror.

Fig. 2.
Fig. 2.

Laser power

Fig. 3.
Fig. 3.

Comparison of emission cross section spectra of Nd:GdVO4 [19] and the laser spectrum.

Fig. 4.
Fig. 4.

Fabry-Perot trace, inset shows detail of peak.

Fig. 5.
Fig. 5.

Temperature tuning of the laser frequency.

Tables (1)

Tables Icon

Table 1. Material constants

Metrics