Abstract

The output pulse characteristics of Q-switched Yb-doped fiber lasers have been investigated experimentally. It has been observed that for any typical modulation frequency, the pump power and the modulator OFF-time govern the shape of the output Q-switched pulse. At a fixed modulation frequency, with a fine adjustment of acousto-optic modulation window ON-time, pump power and cavity mirror position, it was possible to obtain modulation free single-peak pulse, multi-peak pulse, mode-locked resembling pulse and multi-pulse structured pulse shapes in a Q-switched fiber laser output. These observations have been analyzed and explained. Our investigations show that multi-peak pulse output is due to onset of nonlinear phenomena like SBS and SRS. Similarly, we have found that the mode-locked resembling periodically modulated output pulse shape is due to mode beating between the zeroeth order and the first order diffracted beams of the intra-cavity acousto-optic Q-switch.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-mode locking in a Q-switched erbium-doped fiber laser

P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson
Appl. Opt. 32(3) 286-290 (1993)

Experimental investigation on a Q-switched, mode-locked fiber laser based on the combination of active mode locking and passive Q switching

Junsu Lee, Joonhoi Koo, You Min Chang, Pulak Debnath, Yong-Won Song, and Ju Han Lee
J. Opt. Soc. Am. B 29(6) 1479-1485 (2012)

Mode-locking and Q-switching in multi-wavelength fiber ring laser using low frequency phase modulation

Chang Su Jun and Byoung Yoon Kim
Opt. Express 19(7) 6290-6295 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
    [Crossref]
  2. C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,” IEEE Photon. Technol. Lett. 11, 976–978 (1999).
    [Crossref]
  3. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
    [Crossref]
  4. S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber lasers and their application to OTDR,” J. Lightwave Technol. 20, 1506–1511 (2002).
    [Crossref]
  5. P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, and D. N. Payne, “Short-pulse high-power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
    [Crossref]
  6. G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fiber laser,” Electron. Lett. 32, 332–333 (1996).
    [Crossref]
  7. M. Sejka and C. V. Poulsen, “High repetition rate Q-switched ring laser in Er3+-doped fiber,” Opt. Fiber Technol. 1, 167–170 (1995).
    [Crossref]
  8. P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
    [Crossref]
  9. Y. Huo, R. T. Brown, G. G. King, and P. K. Cheo, “Kinetic modeling of Q-switched high-power ytterbium-doped fiber lasers,” Appl. Opt. 43, 1404–1411 (2004).
    [Crossref] [PubMed]
  10. Y. Wang and Chang-Qing Xu, “Modeling and optimization of Q-switched double-clad fiber lasers,” Appl. Opt. 45, 2058–2071 (2006).
    [Crossref] [PubMed]
  11. Y. Wang and Chang-Qing Xu, “Understanding multipeak phenomena in actively Q-switched fiber lasers,” Opt. Lett. 29, 1060–1062 (2004).
    [Crossref] [PubMed]
  12. Y. Wang, A. Martinez-Rios, and Hong Po, “Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking,” Opt. Commun. 224, 113–123 (2003).
    [Crossref]
  13. Y. Wang and Chang-Quing Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40, 1583–1596 (2004).
    [Crossref]
  14. Y. Wang, Alejando Martinez-Rios, and Hong Po, “Pulse evolution of a Q-switched ytterbium-doped double-clad fiber laser,” Opt. Eng. 42, 2521–2526 (2003).
    [Crossref]
  15. Y. Wang, Alejando Martinez-Rios, and Hong Po, “Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser,” Opt. Fiber Technol. 10, 201–214 (2004).
    [Crossref]
  16. J. Swiderski, A. Zajac, P. Konieczny, and M. Skorczakowski, “Numerical model of a Q-switched double-clad fiber laser,” Opt. Express 12, 3554–3559 (2004).
    [Crossref] [PubMed]
  17. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993).
    [Crossref] [PubMed]
  18. P. Myslinski and J. Chrostowski, “High power Q-switched erbium doped fiber laser,” IEEE J. Quantum. Electron. 28, 371–377 (1992).
    [Crossref]
  19. C. C. Cutler, “Why does linear phase shift cause mode locking?,” IEEE J. Quantum Electron. 28, 282–288 (1992).
    [Crossref]
  20. W. L. BarnesM. J. F. Digonnet, “Q-switched fiber lasers,” in Rare-Earth Doped Fiber Lasers and Amplifiers 2nd ed. (Marcel Dekker, 2001) pp.375–391.
  21. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q-switching in double-clad fiber lasers,” Opt. Lett. 23, 454–456 (1998).
    [Crossref]
  22. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
    [Crossref] [PubMed]
  23. A. A. Fotiadi, P. Megret, and M. Blondel, “Dynamics of a self Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29, 1078–1080 (2004).
    [Crossref] [PubMed]
  24. Y. Wang, “Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers,” Opt. Eng. 44, 114202(1–12) (2005).
    [Crossref]
  25. C. Ye, M. Gong, P. Yan, Q. Liu, and G. Chen, “Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifier with 50 W average power,” Opt. Express 14, 7604–7609 (2006).
    [Crossref] [PubMed]
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001)

2006 (2)

2005 (1)

Y. Wang, “Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers,” Opt. Eng. 44, 114202(1–12) (2005).
[Crossref]

2004 (6)

2003 (2)

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Pulse evolution of a Q-switched ytterbium-doped double-clad fiber laser,” Opt. Eng. 42, 2521–2526 (2003).
[Crossref]

Y. Wang, A. Martinez-Rios, and Hong Po, “Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking,” Opt. Commun. 224, 113–123 (2003).
[Crossref]

2002 (1)

2001 (1)

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

2000 (1)

1999 (1)

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,” IEEE Photon. Technol. Lett. 11, 976–978 (1999).
[Crossref]

1998 (1)

1997 (1)

1996 (2)

G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fiber laser,” Electron. Lett. 32, 332–333 (1996).
[Crossref]

P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
[Crossref]

1995 (1)

M. Sejka and C. V. Poulsen, “High repetition rate Q-switched ring laser in Er3+-doped fiber,” Opt. Fiber Technol. 1, 167–170 (1995).
[Crossref]

1993 (1)

1992 (3)

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, and D. N. Payne, “Short-pulse high-power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[Crossref]

P. Myslinski and J. Chrostowski, “High power Q-switched erbium doped fiber laser,” IEEE J. Quantum. Electron. 28, 371–377 (1992).
[Crossref]

C. C. Cutler, “Why does linear phase shift cause mode locking?,” IEEE J. Quantum Electron. 28, 282–288 (1992).
[Crossref]

Adachi, S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001)

Alvarez-Chavez, J. A.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
[Crossref]

Barnes, W. L.

W. L. BarnesM. J. F. Digonnet, “Q-switched fiber lasers,” in Rare-Earth Doped Fiber Lasers and Amplifiers 2nd ed. (Marcel Dekker, 2001) pp.375–391.

Blondel, M.

Brown, R. T.

Chen, G.

Chen, Z. J.

Cheo, P. K.

Chernikov, S. V.

Chrostowski, J.

P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993).
[Crossref] [PubMed]

P. Myslinski and J. Chrostowski, “High power Q-switched erbium doped fiber laser,” IEEE J. Quantum. Electron. 28, 371–377 (1992).
[Crossref]

Clarkson, W. A.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
[Crossref]

Cutler, C. C.

C. C. Cutler, “Why does linear phase shift cause mode locking?,” IEEE J. Quantum Electron. 28, 282–288 (1992).
[Crossref]

Fotiadi, A. A.

Gapontsev, V. P.

Gong, M.

Grudinin, A. B.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,” IEEE Photon. Technol. Lett. 11, 976–978 (1999).
[Crossref]

Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q-switching in double-clad fiber lasers,” Opt. Lett. 23, 454–456 (1998).
[Crossref]

Huo, Y.

Jedrzejewski, K. P.

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, and D. N. Payne, “Short-pulse high-power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[Crossref]

King, G. G.

Konieczny, P.

Koningstein, J. A. K.

Koyamada, Y.

Lees, G. P.

G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fiber laser,” Electron. Lett. 32, 332–333 (1996).
[Crossref]

Liu, Q.

Martinez-Rios, A.

Y. Wang, A. Martinez-Rios, and Hong Po, “Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking,” Opt. Commun. 224, 113–123 (2003).
[Crossref]

Martinez-Rios, Alejando

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser,” Opt. Fiber Technol. 10, 201–214 (2004).
[Crossref]

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Pulse evolution of a Q-switched ytterbium-doped double-clad fiber laser,” Opt. Eng. 42, 2521–2526 (2003).
[Crossref]

Megret, P.

Minelly, J. D.

Morkel, P. R.

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, and D. N. Payne, “Short-pulse high-power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[Crossref]

Myslinski, P.

P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993).
[Crossref] [PubMed]

P. Myslinski and J. Chrostowski, “High power Q-switched erbium doped fiber laser,” IEEE J. Quantum. Electron. 28, 371–377 (1992).
[Crossref]

Newson, T. P.

G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fiber laser,” Electron. Lett. 32, 332–333 (1996).
[Crossref]

Nilsson, J.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
[Crossref]

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,” IEEE Photon. Technol. Lett. 11, 976–978 (1999).
[Crossref]

Offerhaus, H. L.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
[Crossref]

Pagnoux, D.

P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
[Crossref]

Payne, D. N.

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, and D. N. Payne, “Short-pulse high-power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[Crossref]

Po, Hong

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser,” Opt. Fiber Technol. 10, 201–214 (2004).
[Crossref]

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Pulse evolution of a Q-switched ytterbium-doped double-clad fiber laser,” Opt. Eng. 42, 2521–2526 (2003).
[Crossref]

Y. Wang, A. Martinez-Rios, and Hong Po, “Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking,” Opt. Commun. 224, 113–123 (2003).
[Crossref]

Porta, J.

Poulsen, C. V.

M. Sejka and C. V. Poulsen, “High repetition rate Q-switched ring laser in Er3+-doped fiber,” Opt. Fiber Technol. 1, 167–170 (1995).
[Crossref]

Renaud, C. C.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,” IEEE Photon. Technol. Lett. 11, 976–978 (1999).
[Crossref]

Richardson, D. J.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
[Crossref]

Roy, P.

P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
[Crossref]

Sejka, M.

M. Sejka and C. V. Poulsen, “High repetition rate Q-switched ring laser in Er3+-doped fiber,” Opt. Fiber Technol. 1, 167–170 (1995).
[Crossref]

Selvas-Aguilar, R. J.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,” IEEE Photon. Technol. Lett. 11, 976–978 (1999).
[Crossref]

Simpson, J. R.

Skorczakowski, M.

Swiderski, J.

Taylor, E. R.

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, and D. N. Payne, “Short-pulse high-power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[Crossref]

Taylor, J. R.

Turner, P. W.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
[Crossref]

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,” IEEE Photon. Technol. Lett. 11, 976–978 (1999).
[Crossref]

Wang, Y.

Y. Wang and Chang-Qing Xu, “Modeling and optimization of Q-switched double-clad fiber lasers,” Appl. Opt. 45, 2058–2071 (2006).
[Crossref] [PubMed]

Y. Wang, “Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers,” Opt. Eng. 44, 114202(1–12) (2005).
[Crossref]

Y. Wang and Chang-Qing Xu, “Understanding multipeak phenomena in actively Q-switched fiber lasers,” Opt. Lett. 29, 1060–1062 (2004).
[Crossref] [PubMed]

Y. Wang and Chang-Quing Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40, 1583–1596 (2004).
[Crossref]

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser,” Opt. Fiber Technol. 10, 201–214 (2004).
[Crossref]

Y. Wang, A. Martinez-Rios, and Hong Po, “Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking,” Opt. Commun. 224, 113–123 (2003).
[Crossref]

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Pulse evolution of a Q-switched ytterbium-doped double-clad fiber laser,” Opt. Eng. 42, 2521–2526 (2003).
[Crossref]

Xu, Chang-Qing

Xu, Chang-Quing

Y. Wang and Chang-Quing Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40, 1583–1596 (2004).
[Crossref]

Yan, P.

Ye, C.

Zajac, A.

Zhu, Y.

Appl. Opt. (3)

Electron. Lett. (1)

G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fiber laser,” Electron. Lett. 32, 332–333 (1996).
[Crossref]

IEEE J. Quantum Electron. (3)

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high energy fiber designs,” IEEE J. Quantum Electron. 37, 199–206 (2001).
[Crossref]

Y. Wang and Chang-Quing Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40, 1583–1596 (2004).
[Crossref]

C. C. Cutler, “Why does linear phase shift cause mode locking?,” IEEE J. Quantum Electron. 28, 282–288 (1992).
[Crossref]

IEEE J. Quantum. Electron. (1)

P. Myslinski and J. Chrostowski, “High power Q-switched erbium doped fiber laser,” IEEE J. Quantum. Electron. 28, 371–377 (1992).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40nm,” IEEE Photon. Technol. Lett. 11, 976–978 (1999).
[Crossref]

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, and D. N. Payne, “Short-pulse high-power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

Y. Wang, A. Martinez-Rios, and Hong Po, “Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking,” Opt. Commun. 224, 113–123 (2003).
[Crossref]

Opt. Eng. (2)

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Pulse evolution of a Q-switched ytterbium-doped double-clad fiber laser,” Opt. Eng. 42, 2521–2526 (2003).
[Crossref]

Y. Wang, “Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers,” Opt. Eng. 44, 114202(1–12) (2005).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (3)

Y. Wang, Alejando Martinez-Rios, and Hong Po, “Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser,” Opt. Fiber Technol. 10, 201–214 (2004).
[Crossref]

M. Sejka and C. V. Poulsen, “High repetition rate Q-switched ring laser in Er3+-doped fiber,” Opt. Fiber Technol. 1, 167–170 (1995).
[Crossref]

P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996).
[Crossref]

Opt. Lett. (5)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001)

W. L. BarnesM. J. F. Digonnet, “Q-switched fiber lasers,” in Rare-Earth Doped Fiber Lasers and Amplifiers 2nd ed. (Marcel Dekker, 2001) pp.375–391.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental set-up of acousto-optic Q-switched Yb-doped fiber laser
Fig. 2.
Fig. 2. (a)–(d) Observation of multi-pulses and disappearance of post pulses with increasing modulator OFF-time in the output of the Q-switched Yb-doped fiber laser at a typical modulation frequency of 20 kHz and a fixed input pump power of 11.72 W; blue trace shows modulating signal and black trace shows output laser pulses appearing after a delay, with reference to the falling edge of the modulating signal, that is equal to the pulse build-up time.
Fig. 3.
Fig. 3. (a)–(f) Single- and multi-peak (or split peak) pulse output of Yb-doped Q-switched fiber laser with increasing pump power, for a constant modulation window ON-time of tON=32µs (RF OFF-time) and a fixed modulation frequency of 20 kHz; blue trace shows the falling edge of modulation window ON-time; black trace shows shape of the output Q-switched pulse
Fig. 4.
Fig. 4. Output wavelength spectrum corresponding to Q-switched pulses in Fig. 3 at input pump powers of (a) 11.72 W (b) 13.07 W (c) 13.52 W and (d) 13.97 W.
Fig. 5.
Fig. 5. (a)–(g) Single and multi-peak or split pulse output of Yb-doped Q-switched fiber laser with an increase in input pump power for a constant modulation window ON-time of tON=28.8µs at a fixed modulation frequency of 25 kHz; in the inset, blue trace shows the modulating signal and black trace shows output Q-switched pulse. (h) Spectrum corresponding to pulse shape in (g).
Fig. 6.
Fig. 6. (a). Mode-locked resembling pulse shape and (b) corresponding output spectrum at 32kHz modulation frequency and at an input pump power of 12 W. Inset shows modulating signal with a modulation window ON-time of tON=23.2 µs (blue trace) and mode-locked resembling pulse after a delay equal to pulse build-up time (black trace).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( P 0 cr ) SRS 16 A eff g R L eff
( P 0 cr ) SBS 21 A eff g B L eff [ 1 + Δ ν s Δ ν B ]
L eff = 1 α s [ 1 exp ( α s L ) ]
Δ ν NL = 0.273 γ z eff P 0 T 0
γ = 2 π n 2 λ 0 A eff

Metrics