Abstract

Ultra-small modulator and demodulator for 10 Gb/s differential phase-shift-keying (DPSK), using silicon-based microrings, are proposed. A single-waveguide microring modulator with over-coupling between ring and waveguide generates a DPSK signal, while a double-waveguide microring filter enables balanced DPSK detection. These modulator and demodulator are characterized. A trade-off between pattern dependence of the Duobinary signal and alternate-mark inversion signal power in demodulator design is discussed. Power penalty of the proposed approach is 0.8 dB relative to baseline using conventional modulation and demodulation techniques.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. H. Gnauck, and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).
    [CrossRef]
  2. E. A. Swanson, J. C. Livas, and R. S. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
    [CrossRef]
  3. E. Ciaramella, G. Contestabile, and A. D'Errico, "A novel scheme to detect optical DPSK signals," IEEE Photon. Technol. Lett. 16, 2138-2140 (2004).
    [CrossRef]
  4. I. Lyubomirsky and C. Chien, "DPSK demodulator based on optical discriminator filter," IEEE Photon. Technol. Lett. 17, 492-494 (2005).
    [CrossRef]
  5. L. Christen, Y. K. Lize, S. Nuccio, J.-Y Yang, S. Poorya, A. E. Willner, L. Paraschis, "Fiber Bragg grating balanced DPSK demodulation," in Proceedings of IEEE LEOS Annual Meeting 2006 (Institute of Electrical and Electronics Engineers, Montreal, Canada, 2006), pp. 563-564.
  6. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312-1317 (2000).
    [CrossRef]
  7. C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
    [CrossRef]
  8. R. D. Kekatpure and M. L. Brongersma, "CMOS compatible high-speed electro-optical modulator," Proc. SPIE 5926, 59260 (2005).
    [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  10. C. A. Barrios, "Electrooptic modulation of multisilicon-on-insulator photonic wires," J. Lightwave Technol. 24, 2146-2155 (2006).
    [CrossRef]
  11. Y. Chen and S. Blair, "Nonlinear phase shift of cascaded microring resonators," J. Opt. Soc. Am. B  20, 2125-2132 (2003).
    [CrossRef]
  12. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
    [CrossRef]
  13. A. Stapleton, S. Farrell, H. Akhavan, R. Shafiiha, Z. Peng, S.-J. Choi, J. O’Brien, P. D. Dapkus, and W. Marshall, "Optical phase characterization of active semiconductor microdisk resonators in transmission," Appl. Phys. Lett. 88, 031106 (2006).
    [CrossRef]
  14. R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  15. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]

2006 (2)

C. A. Barrios, "Electrooptic modulation of multisilicon-on-insulator photonic wires," J. Lightwave Technol. 24, 2146-2155 (2006).
[CrossRef]

A. Stapleton, S. Farrell, H. Akhavan, R. Shafiiha, Z. Peng, S.-J. Choi, J. O’Brien, P. D. Dapkus, and W. Marshall, "Optical phase characterization of active semiconductor microdisk resonators in transmission," Appl. Phys. Lett. 88, 031106 (2006).
[CrossRef]

2005 (4)

A. H. Gnauck, and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).
[CrossRef]

I. Lyubomirsky and C. Chien, "DPSK demodulator based on optical discriminator filter," IEEE Photon. Technol. Lett. 17, 492-494 (2005).
[CrossRef]

R. D. Kekatpure and M. L. Brongersma, "CMOS compatible high-speed electro-optical modulator," Proc. SPIE 5926, 59260 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

2004 (3)

E. Ciaramella, G. Contestabile, and A. D'Errico, "A novel scheme to detect optical DPSK signals," IEEE Photon. Technol. Lett. 16, 2138-2140 (2004).
[CrossRef]

C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef]

2003 (1)

2000 (1)

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312-1317 (2000).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

1994 (1)

E. A. Swanson, J. C. Livas, and R. S. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

1987 (1)

R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

A. Stapleton, S. Farrell, H. Akhavan, R. Shafiiha, Z. Peng, S.-J. Choi, J. O’Brien, P. D. Dapkus, and W. Marshall, "Optical phase characterization of active semiconductor microdisk resonators in transmission," Appl. Phys. Lett. 88, 031106 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, "Optical transmission characteristics of fiber ring resonators," IEEE J. Quantum Electron. 40, 726-730 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312-1317 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

E. A. Swanson, J. C. Livas, and R. S. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

E. Ciaramella, G. Contestabile, and A. D'Errico, "A novel scheme to detect optical DPSK signals," IEEE Photon. Technol. Lett. 16, 2138-2140 (2004).
[CrossRef]

I. Lyubomirsky and C. Chien, "DPSK demodulator based on optical discriminator filter," IEEE Photon. Technol. Lett. 17, 492-494 (2005).
[CrossRef]

J. Appl. Phys. (1)

C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. D. Kekatpure and M. L. Brongersma, "CMOS compatible high-speed electro-optical modulator," Proc. SPIE 5926, 59260 (2005).
[CrossRef]

Other (1)

L. Christen, Y. K. Lize, S. Nuccio, J.-Y Yang, S. Poorya, A. E. Willner, L. Paraschis, "Fiber Bragg grating balanced DPSK demodulation," in Proceedings of IEEE LEOS Annual Meeting 2006 (Institute of Electrical and Electronics Engineers, Montreal, Canada, 2006), pp. 563-564.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Microring-based NRZ-DPSK modulation and demodulation schemes. (a) In modulation, CW experiences a phase shift of π between two open circles, using a single-waveguide over-coupled structure. (b) Demodulation is achieved using a double-waveguide microring filter where Duobinary and AMI are obtained in the band-pass and notch ports.

Fig. 2.
Fig. 2.

(a) Symbol constellation diagrams for microring-based modulator (dash), phase modulator (dash dot) and MZM (dot). (b). DPSK signal bandwidth vs. transit time. (c). DPSK spectrum modulated by MZM. (d). DPSK spectrum modulated by microring, in the same scale. (10 dB/div. in power and 20 GHz/div. in frequency)

Fig. 3.
Fig. 3.

Eye-opening penalty of the modulated DPSK signal, compared to a MZM, versus carrier transit time (a) and CW offset (b). Two eye-diagrams in each figure are shown in the same scale.

Fig. 4.
Fig. 4.

A comparison of original logic (a), obtained Duobinary (b) and AMI (c) data shows correct information is demodulated.

Fig. 5.
Fig. 5.

Quality of the demodulated signal is examined with varied cavity Q-factor. Two eye-diagrams are shown in the same scale.

Fig. 6.
Fig. 6.

Tolerance of microring-based DPSK demodulator and DLI to varied signal bit-rate. The proposed approach is more tolerant to a lowered bit rate.

Fig. 7.
Fig. 7.

BER curves given by all microring-based DPSK modulation and demodulation, with 0.8-dB power penalty, compared to a conventional DPSK link: MZM + DLI.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E out E in = t a exp ( i ϕ ) 1 ta exp ( i ϕ )
E out E in = ( 1 t 2 ) a exp ( i ϕ ) 1 t 2 a exp ( i ϕ )

Metrics