Abstract

We report on the temperature dependent spectroscopic properties of Yb3+ and Er3+ co-doped glass gain media in the eye-safe spectral region. Measurements suggest that judicious selection of the operating wavelength can lead to a laser output with minimal dependence on the temperature of the gain medium.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bass, L.S. Weichman, S. Vigil, and B. Brickeen, “The temperature dependence of Nd3+doped solid-state laser,” IEEE J. Quantum Electron 39, 741–748 (2003)
    [Crossref]
  2. P. Laporta, S. De Silvestri, V. Magni, and O. Svelto, “Diode-pumped cw bulk Er:Yb:glass laser,” Opt. Lett. 161952- (1991)
    [Crossref] [PubMed]
  3. C.M. Stickly, M.E. Fillipkowski, E. Parra, and E.E. Hack III, “Super high efficiency diode sources (SHEDS) and architecture for diode high energy laser systems (ADHELS): An overview,” in 21st Annual Conference on Advanced Solid-State Photonics, paper TuAl, 2006
  4. C. Trussell, V. King, A. Hays, and S. Hamlin, “Diode-pumped Er,Yb:glass micro-laser,” Proc. SPIE5332–14, (2004)
  5. A. Levoshkin and A. Petrov, “Miniature Q-switched flashlamp-pumped erbium glass lasers with low threshold and short output pulse duration,” Proc. SPIE 4680, pp 22–29, (2002)
    [Crossref]
  6. B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962)
    [Crossref]
  7. G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem Phys 37, 511–520 (1962)
    [Crossref]
  8. S. A. Payne, L.L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “ Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron 28, 2619–2630 (1992)
    [Crossref]
  9. T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

2003 (1)

M. Bass, L.S. Weichman, S. Vigil, and B. Brickeen, “The temperature dependence of Nd3+doped solid-state laser,” IEEE J. Quantum Electron 39, 741–748 (2003)
[Crossref]

2002 (1)

A. Levoshkin and A. Petrov, “Miniature Q-switched flashlamp-pumped erbium glass lasers with low threshold and short output pulse duration,” Proc. SPIE 4680, pp 22–29, (2002)
[Crossref]

1992 (1)

S. A. Payne, L.L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “ Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron 28, 2619–2630 (1992)
[Crossref]

1991 (1)

P. Laporta, S. De Silvestri, V. Magni, and O. Svelto, “Diode-pumped cw bulk Er:Yb:glass laser,” Opt. Lett. 161952- (1991)
[Crossref] [PubMed]

1962 (2)

B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962)
[Crossref]

G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem Phys 37, 511–520 (1962)
[Crossref]

Bass, M.

M. Bass, L.S. Weichman, S. Vigil, and B. Brickeen, “The temperature dependence of Nd3+doped solid-state laser,” IEEE J. Quantum Electron 39, 741–748 (2003)
[Crossref]

T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

Brickeen, B.

M. Bass, L.S. Weichman, S. Vigil, and B. Brickeen, “The temperature dependence of Nd3+doped solid-state laser,” IEEE J. Quantum Electron 39, 741–748 (2003)
[Crossref]

Chase, L.L.

S. A. Payne, L.L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “ Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron 28, 2619–2630 (1992)
[Crossref]

Chen, Y.

T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

Chung, T.-Y.

T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

De Silvestri, S.

P. Laporta, S. De Silvestri, V. Magni, and O. Svelto, “Diode-pumped cw bulk Er:Yb:glass laser,” Opt. Lett. 161952- (1991)
[Crossref] [PubMed]

Fillipkowski, M.E.

C.M. Stickly, M.E. Fillipkowski, E. Parra, and E.E. Hack III, “Super high efficiency diode sources (SHEDS) and architecture for diode high energy laser systems (ADHELS): An overview,” in 21st Annual Conference on Advanced Solid-State Photonics, paper TuAl, 2006

Glebov, L.B.

T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

Hack III, E.E.

C.M. Stickly, M.E. Fillipkowski, E. Parra, and E.E. Hack III, “Super high efficiency diode sources (SHEDS) and architecture for diode high energy laser systems (ADHELS): An overview,” in 21st Annual Conference on Advanced Solid-State Photonics, paper TuAl, 2006

Hamlin, S.

C. Trussell, V. King, A. Hays, and S. Hamlin, “Diode-pumped Er,Yb:glass micro-laser,” Proc. SPIE5332–14, (2004)

Hays, A.

C. Trussell, V. King, A. Hays, and S. Hamlin, “Diode-pumped Er,Yb:glass micro-laser,” Proc. SPIE5332–14, (2004)

Judd, B.R.

B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962)
[Crossref]

King, V.

C. Trussell, V. King, A. Hays, and S. Hamlin, “Diode-pumped Er,Yb:glass micro-laser,” Proc. SPIE5332–14, (2004)

Krupke, W. F.

S. A. Payne, L.L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “ Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron 28, 2619–2630 (1992)
[Crossref]

Kway, W. L.

S. A. Payne, L.L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “ Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron 28, 2619–2630 (1992)
[Crossref]

Laporta, P.

P. Laporta, S. De Silvestri, V. Magni, and O. Svelto, “Diode-pumped cw bulk Er:Yb:glass laser,” Opt. Lett. 161952- (1991)
[Crossref] [PubMed]

Levoshkin, A.

A. Levoshkin and A. Petrov, “Miniature Q-switched flashlamp-pumped erbium glass lasers with low threshold and short output pulse duration,” Proc. SPIE 4680, pp 22–29, (2002)
[Crossref]

Magni, V.

P. Laporta, S. De Silvestri, V. Magni, and O. Svelto, “Diode-pumped cw bulk Er:Yb:glass laser,” Opt. Lett. 161952- (1991)
[Crossref] [PubMed]

Ofelt, G.S.

G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem Phys 37, 511–520 (1962)
[Crossref]

Parra, E.

C.M. Stickly, M.E. Fillipkowski, E. Parra, and E.E. Hack III, “Super high efficiency diode sources (SHEDS) and architecture for diode high energy laser systems (ADHELS): An overview,” in 21st Annual Conference on Advanced Solid-State Photonics, paper TuAl, 2006

Payne, S. A.

S. A. Payne, L.L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “ Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron 28, 2619–2630 (1992)
[Crossref]

Petrov, A.

A. Levoshkin and A. Petrov, “Miniature Q-switched flashlamp-pumped erbium glass lasers with low threshold and short output pulse duration,” Proc. SPIE 4680, pp 22–29, (2002)
[Crossref]

Rapaport, A.

T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

Richardson, M.C.

T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

Smirnov, V.

T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

Smith, L. K.

S. A. Payne, L.L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “ Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron 28, 2619–2630 (1992)
[Crossref]

Stickly, C.M.

C.M. Stickly, M.E. Fillipkowski, E. Parra, and E.E. Hack III, “Super high efficiency diode sources (SHEDS) and architecture for diode high energy laser systems (ADHELS): An overview,” in 21st Annual Conference on Advanced Solid-State Photonics, paper TuAl, 2006

Svelto, O.

P. Laporta, S. De Silvestri, V. Magni, and O. Svelto, “Diode-pumped cw bulk Er:Yb:glass laser,” Opt. Lett. 161952- (1991)
[Crossref] [PubMed]

Trussell, C.

C. Trussell, V. King, A. Hays, and S. Hamlin, “Diode-pumped Er,Yb:glass micro-laser,” Proc. SPIE5332–14, (2004)

Vigil, S.

M. Bass, L.S. Weichman, S. Vigil, and B. Brickeen, “The temperature dependence of Nd3+doped solid-state laser,” IEEE J. Quantum Electron 39, 741–748 (2003)
[Crossref]

Weichman, L.S.

M. Bass, L.S. Weichman, S. Vigil, and B. Brickeen, “The temperature dependence of Nd3+doped solid-state laser,” IEEE J. Quantum Electron 39, 741–748 (2003)
[Crossref]

IEEE J. Quantum Electron (2)

M. Bass, L.S. Weichman, S. Vigil, and B. Brickeen, “The temperature dependence of Nd3+doped solid-state laser,” IEEE J. Quantum Electron 39, 741–748 (2003)
[Crossref]

S. A. Payne, L.L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “ Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron 28, 2619–2630 (1992)
[Crossref]

J. Chem Phys (1)

G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem Phys 37, 511–520 (1962)
[Crossref]

Opt. Lett. (1)

P. Laporta, S. De Silvestri, V. Magni, and O. Svelto, “Diode-pumped cw bulk Er:Yb:glass laser,” Opt. Lett. 161952- (1991)
[Crossref] [PubMed]

Phys. Rev. (1)

B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962)
[Crossref]

Proc. SPIE (1)

A. Levoshkin and A. Petrov, “Miniature Q-switched flashlamp-pumped erbium glass lasers with low threshold and short output pulse duration,” Proc. SPIE 4680, pp 22–29, (2002)
[Crossref]

Other (3)

T.-Y. Chung, A. Rapaport, Y. Chen, V. Smirnov, L.B. Glebov, M.C. Richardson, and M. Bass,“Stabilization, spectral narrowing and optimization of solid-state lasers using volumetric PTR Bragg grating cavity mirrors”, SSDLTR, DEPS, Albuquerque, NM, June 13–15 (2006)

C.M. Stickly, M.E. Fillipkowski, E. Parra, and E.E. Hack III, “Super high efficiency diode sources (SHEDS) and architecture for diode high energy laser systems (ADHELS): An overview,” in 21st Annual Conference on Advanced Solid-State Photonics, paper TuAl, 2006

C. Trussell, V. King, A. Hays, and S. Hamlin, “Diode-pumped Er,Yb:glass micro-laser,” Proc. SPIE5332–14, (2004)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Emission cross-sections for the Kigre MM2 Yb,Er:phosphate glass at various temperatures.

Fig. 2.
Fig. 2.

Single pass gain for the Kigre MM2 Yb,Er:phosphate glass at various temperatures.

Fig. 3.
Fig. 3.

Comparison of the variation in small single gain between the glass hosts.

Tables (2)

Tables Icon

Table 1. Calculated values of Ωt and the emission parameters for the four glasses

Tables Icon

Table 2. Calculated single pass small signal gain for the various glasses

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = ln 10 · ABS ( λ ) l
S DE exp ( J J ) = 3 hc ( 2 J + 1 ) · 9 n ( λ ¯ ) · α ( λ ) d λ N · 8 π 3 λ ¯ · ( n ( λ ¯ ) 2 + 2 ) 2
S DE calc ( J J ) = e 2 t = 2 , 4 , 6 Ω t J U ( t ) J 2
τ rad , J ( J J ) = 1 J A DE ( J J )
A DE ( J J ) = 64 π 4 3 h ( 2 J + 1 ) n ( n 2 + 2 2 ) 9 λ ¯ 3 S DE calc ( J J ) .
σ em ( I K , λ ) = 1 8 π · λ 5 · β ( I K ) n 2 · c · 1 τ rad · I em ( λ ) I K I em ( λ ) · λ · d λ ,
σ e ( λ ) = σ a ( λ ) Z l Z u exp [ hc λ 0 hc λ kT ] ,
G = exp [ ( σ e n u σ a n l ) · L ] ,

Metrics