Abstract

We report the first 1310 nm hybrid laser on a silicon substrate. This laser operates continuous wave (C.W.) up to 105 °C. The room temperature threshold current of this laser is 30 mA, and the maximum single sided fiber-coupled output power is 5.5 mW.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref] [PubMed]
  2. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
    [Crossref] [PubMed]
  3. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express,  14, 9203–9210 (2006).
    [Crossref] [PubMed]
  4. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006).
    [Crossref] [PubMed]
  5. P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, “Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs,” Opt. Express 14, 3864–3871 (2006).
    [Crossref] [PubMed]
  6. R. Sawada, H. Nakada, and F. Ohira, “Highly accurate and quick bonding for planar lightwave circuit and laser-diode chip,” in Proceedings of IEEE IEMT/IMC (IEEE, 1998), 133–137.
  7. R. Boudreau, P. Zhou, and T. Bowen, “Wafer scale photonic-die attachment,” IEEE transactions on components, packaging and manufacturing technology, Part B 21, 136–139 (1998)
    [Crossref]
  8. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
    [Crossref] [PubMed]
  9. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002).
    [Crossref]
  10. Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
    [Crossref]
  11. Fimmwave, Photon Design, http://www.photond.com
  12. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers,” A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232., (2007).
    [Crossref]

2007 (2)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers,” A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232., (2007).
[Crossref]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002).
[Crossref]

1998 (1)

R. Boudreau, P. Zhou, and T. Bowen, “Wafer scale photonic-die attachment,” IEEE transactions on components, packaging and manufacturing technology, Part B 21, 136–139 (1998)
[Crossref]

Baets, R.

Boudreau, R.

R. Boudreau, P. Zhou, and T. Bowen, “Wafer scale photonic-die attachment,” IEEE transactions on components, packaging and manufacturing technology, Part B 21, 136–139 (1998)
[Crossref]

Bowen, T.

R. Boudreau, P. Zhou, and T. Bowen, “Wafer scale photonic-die attachment,” IEEE transactions on components, packaging and manufacturing technology, Part B 21, 136–139 (1998)
[Crossref]

Bowers, J. E.

Boyraz, O.

Chang, Y.-A.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Chen, J.-R.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Cohen, O.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[Crossref] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers,” A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232., (2007).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express,  14, 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Di Cioccio, L.

Fang, A. W.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers,” A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232., (2007).
[Crossref]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[Crossref] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express,  14, 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Fedeli, J. M.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002).
[Crossref]

Hollinger, G.

Jalali, B.

Jones, R.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[Crossref] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers,” A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232., (2007).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express,  14, 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Kazmierczak, A.

Ko, T.-S.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Kuo, H.-C.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Kuo, Y.-K.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Lai, F.-I

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Laih, L.-H.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Laih, L.-W.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Letartre, X.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Lu, T.-C.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Nakada, H.

R. Sawada, H. Nakada, and F. Ohira, “Highly accurate and quick bonding for planar lightwave circuit and laser-diode chip,” in Proceedings of IEEE IEMT/IMC (IEEE, 1998), 133–137.

Nötzel, R.

Ohira, F.

R. Sawada, H. Nakada, and F. Ohira, “Highly accurate and quick bonding for planar lightwave circuit and laser-diode chip,” in Proceedings of IEEE IEMT/IMC (IEEE, 1998), 133–137.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Paniccia, M. J.

Park, H.

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002).
[Crossref]

Raday, O.

Regreny, P.

Roelkens, G.

Rojo Romeo, P.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Sawada, R.

R. Sawada, H. Nakada, and F. Ohira, “Highly accurate and quick bonding for planar lightwave circuit and laser-diode chip,” in Proceedings of IEEE IEMT/IMC (IEEE, 1998), 133–137.

Seassal, C.

Smit, M.

Van Campenhout, J.

Van Thourhout, D.

Wang, S.-C.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Wu, I-T.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Yu, C.-L.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Zhou, P.

R. Boudreau, P. Zhou, and T. Bowen, “Wafer scale photonic-die attachment,” IEEE transactions on components, packaging and manufacturing technology, Part B 21, 136–139 (1998)
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers,” A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232., (2007).
[Crossref]

IEEE transactions on components, packaging and manufacturing technology, Part B (1)

R. Boudreau, P. Zhou, and T. Bowen, “Wafer scale photonic-die attachment,” IEEE transactions on components, packaging and manufacturing technology, Part B 21, 136–139 (1998)
[Crossref]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Semicond. Sci. Technol. (1)

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang,” The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006).
[Crossref]

Other (2)

Fimmwave, Photon Design, http://www.photond.com

R. Sawada, H. Nakada, and F. Ohira, “Highly accurate and quick bonding for planar lightwave circuit and laser-diode chip,” in Proceedings of IEEE IEMT/IMC (IEEE, 1998), 133–137.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Silicon evanescent laser structure. w=2.5 µm, h=0.69 µm, and d=0.52 µm.

Fig. 2.
Fig. 2.

The measured SEL optical mode and simulated results: (a) measured optical mode; (b) simulated fundamental mode; (c) second order transverse mode

Fig. 3.
Fig. 3.

The confinement factor in III–V region simulation for different silicon waveguide height: (a) confinement factor calculations for the fundamental mode and second transverse mode as a function of waveguide height (b) fundamental and second transverse modes for waveguide heights of 0.7, 0.475, and 0.4 µm. The image aspect ratio (Height:Width) is 4:1.

Fig. 4.
Fig. 4.

The single sided fiber coupled laser power output as a function of drive current at different temperatures.

Fig. 5.
Fig. 5.

Pulse measurement results for 2.5 µm waveguide width SELs: (a) the relation between 1/ηd (differential quantum efficiency) and device length; (b) modal gain at different current densities.

Fig. 6.
Fig. 6.

The spectrum of silicon evanescent laser under 100 mA driving current at 15 °C.

Tables (1)

Tables Icon

Table 1. III–V epitaxial growth layer structure

Metrics