Abstract

We present an optical frequency comb generator (OFCG) based on a fiber ring laser that provides a bandwidth of over 1.8 THz with mode-locked pulse operation by external injection seeding. The OFCG was developed via a configuration with actively mode-locked fiber ring laser utilizing an acousto-optic modulator (AOM) with a carrier frequency of 150 MHz when an external seeding laser was injected into the fiber ring cavity. To our knowledge, our experimental device has the widest comb bandwidth ever reported for an OFCG based on a fiber ring loop adopting an AOM device, and ours is the first device that can operate with an actively mode-locked scheme.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, "Fiber lasers for ultrafast optics," Appl. Phys. B. 65, 259-275 (1997).
    [CrossRef]
  2. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort pulse fiber ring lasers," Appl. Phys. B. 65, 277-294 (1997).
    [CrossRef]
  3. J. Rauschenberger, T. M. Fortier, D. J. Jone, J. Ye, and S. T. Cundiff, "Control of the frequency comb from a mode-locked erbium-doped fiber laser," Opt. Express 10, 1404-1410 (2002).
    [PubMed]
  4. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
    [CrossRef]
  5. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, "Optoelectronic millimeter wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling carrier photodiode," J. Lightwave Technol.  21, 3043-3051 (2003).
    [CrossRef]
  6. T. G. Hodgkinson and P. Coppin, "Pulsed operation of an optical feedback frequency synthetiser," Electron. Lett. 26, 1155-1157 (1990).
    [CrossRef]
  7. P. Coppin and T. G. Hodgkinson, "Novel optical frequency comb synthesis using optical feedback," Electron. Lett. 26, 28-30 (1990).
    [CrossRef]
  8. P. D. Dragic, "Injection-seeded Q-switched fiber ring laser," IEEE Photon. Technol. Lett. 16, 1822-1824 (2004).
    [CrossRef]
  9. H. Takesue, F. Yamamoto, and T. Horiguchi, "Stable lightwave frequency synthesis over 1-THz span using Fabry-Perot cavity containing polarization rotation elements and actively controlled tunable bandpass filter," IEEE Photon. Technol. Lett. 12, 79-81 (2000).
    [CrossRef]
  10. K. Shimizu, T. Horiguchi, and Y. Koyamada, "Technique for translating light wave frequency by using an optical ring circuit containing a frequency shifter," Opt. Lett. 17,1307-1309 (1992).
    [CrossRef] [PubMed]
  11. M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
    [CrossRef]
  12. F. V. Kowalski, S. J. Shattil, and P. D. Hale, "Optical pulse generation with a frequency shifted feedback laser," Appl. Phys. Lett. 53, 734-736 (1988).
    [CrossRef]
  13. H. Sabert and E. Brinkmeyer, "Pulse generation in fiber lasers with frequency shifted feedback," J. Lightwave. Technol. 12, 1360-1368 (1994).
    [CrossRef]
  14. S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
    [CrossRef]

2004

P. D. Dragic, "Injection-seeded Q-switched fiber ring laser," IEEE Photon. Technol. Lett. 16, 1822-1824 (2004).
[CrossRef]

2003

2002

2000

H. Takesue, F. Yamamoto, and T. Horiguchi, "Stable lightwave frequency synthesis over 1-THz span using Fabry-Perot cavity containing polarization rotation elements and actively controlled tunable bandpass filter," IEEE Photon. Technol. Lett. 12, 79-81 (2000).
[CrossRef]

1999

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

1997

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, "Fiber lasers for ultrafast optics," Appl. Phys. B. 65, 259-275 (1997).
[CrossRef]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort pulse fiber ring lasers," Appl. Phys. B. 65, 277-294 (1997).
[CrossRef]

1994

H. Sabert and E. Brinkmeyer, "Pulse generation in fiber lasers with frequency shifted feedback," J. Lightwave. Technol. 12, 1360-1368 (1994).
[CrossRef]

1993

M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
[CrossRef]

1992

1990

T. G. Hodgkinson and P. Coppin, "Pulsed operation of an optical feedback frequency synthetiser," Electron. Lett. 26, 1155-1157 (1990).
[CrossRef]

P. Coppin and T. G. Hodgkinson, "Novel optical frequency comb synthesis using optical feedback," Electron. Lett. 26, 28-30 (1990).
[CrossRef]

1988

F. V. Kowalski, S. J. Shattil, and P. D. Hale, "Optical pulse generation with a frequency shifted feedback laser," Appl. Phys. Lett. 53, 734-736 (1988).
[CrossRef]

Appl. Phys. B.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, "Fiber lasers for ultrafast optics," Appl. Phys. B. 65, 259-275 (1997).
[CrossRef]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort pulse fiber ring lasers," Appl. Phys. B. 65, 277-294 (1997).
[CrossRef]

Appl. Phys. Lett.

F. V. Kowalski, S. J. Shattil, and P. D. Hale, "Optical pulse generation with a frequency shifted feedback laser," Appl. Phys. Lett. 53, 734-736 (1988).
[CrossRef]

Electron. Lett.

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

T. G. Hodgkinson and P. Coppin, "Pulsed operation of an optical feedback frequency synthetiser," Electron. Lett. 26, 1155-1157 (1990).
[CrossRef]

P. Coppin and T. G. Hodgkinson, "Novel optical frequency comb synthesis using optical feedback," Electron. Lett. 26, 28-30 (1990).
[CrossRef]

IEEE J. Quantum Electron.

M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron. 29, 2693-2701 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

P. D. Dragic, "Injection-seeded Q-switched fiber ring laser," IEEE Photon. Technol. Lett. 16, 1822-1824 (2004).
[CrossRef]

H. Takesue, F. Yamamoto, and T. Horiguchi, "Stable lightwave frequency synthesis over 1-THz span using Fabry-Perot cavity containing polarization rotation elements and actively controlled tunable bandpass filter," IEEE Photon. Technol. Lett. 12, 79-81 (2000).
[CrossRef]

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

J. Lightwave Technol.

J. Lightwave. Technol.

H. Sabert and E. Brinkmeyer, "Pulse generation in fiber lasers with frequency shifted feedback," J. Lightwave. Technol. 12, 1360-1368 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Configuration of the experimental setup for a fiber optical frequency comb generator. The external cavity laser diode (ECLD) source was used for the injection seeding.

Fig. 2.
Fig. 2.

The spectrum of the forward amplified spontaneous emission (ASE) for an erbium doped fiber of 1-m length pumped at 200 mW. The ASE spectrum has a peak at 1560 nm instead of the usual one at 1530 nm due to depletion of pump power.

Fig. 3.
Fig. 3.

The variation of comb spectra on the RF spectrum in term of the different injection wavelengths from the externally seeded laser. The upper right inset is the lasing spectrum injected by a seed laser with a wavelength of 1565 nm.

Fig. 4.
Fig. 4.

Mode locked optical spectrum centered at 1562 nm with effective spectral width of 15 nm for comb generation from a fiber ring laser. The launched power of the pumping LD is 250 mW. The insert shows the pulse train measured by a 100 MHz sampling oscilloscope in the time domain.

Fig. 5.
Fig. 5.

The output spectra of comb generator with periodic frequency spacing when applied to the acousto-optic device by the modulation frequency of 150 MHz with mode-locked pulse operation. The wavelength and power of seed laser was 1565 nm and 1.6 mW, respectively.

Metrics