Abstract

An optical gas sensor is presented, making use of a dispersed supercontinuum source, capable of acquiring broad bandwidth spectra at ultrahigh wavelength sweep and repetition rates. Wavelength sweeps from 1100 nm to 1700 nm can be performed in 800 ns at a spectral resolution of 40 pm. This is comparable to line-widths of molecular spectra at atmospheric pressure. Quantitative measurements are presented of CH4 employing 80 nm wide sweeps over the P- Q- and R-branches of the 2ν3 transition near 1665 nm, at rates exceeding 100 kHz. The effective acquisition rate is determined by the amount of averaging required, and the effect of this averaging on observed precision is investigated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. G. Allen, E. R. Furlong, and R. K. Hanson, "Tunable Diode Laser Sensing and Combustion Control," in Applied Combustion Diagnostics, K. Kohse-Hoinghaus, and J. B. Jeffries, eds., (Taylor and Francis, New York, 2002).
  2. M. G. Allen, "Diode laser absorption sensors for gas-dynamic and combustion flows," Meas. Sci. Technol. 9, 545-562 (1998).
    [CrossRef]
  3. P. A. Martin, "Near-infrared diode laser spectroscopy in chemical process and environemental air monitoring," Chem. Soc. Rev. 31, 201-210 (2002).
    [CrossRef] [PubMed]
  4. M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M-C. Ackman, R. Shau, and J. Rosskopf, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
    [CrossRef]
  5. S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson,"Rapid temperature tuning of a 1.4-mum diode laser with application to high-pressure H2O absorption spectroscopy," Opt. Lett. 26, 1568-1570 (2001).
    [CrossRef]
  6. E. L. Normand, M. T. McCulloch, G. Duxbury, and N. Langford, "Fast, real-time spectrometer based on a pulsed quantum-cascade laser," Opt. Lett. 28, 16-18 (2003).
    [CrossRef] [PubMed]
  7. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, "Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor," Appl. Opt. 44, 6729-6740 (2005).
    [CrossRef] [PubMed]
  8. X. Zhou, J. B. Jeffries, and R. K. Hanson, "Development of a fast temperature sensor for combustion gases using a single tunable diode laser," Appl. Phys. B 81, 711-722 (2005).
    [CrossRef]
  9. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, "Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows," Appl. Opt. 36, 8745-8752 (1997).
    [CrossRef]
  10. A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, and M. Scotoni, "Resonant photoacoustic simultaneous detection of methane and ethylene by means of a 1.63-μm diode laser," Appl. Phys. B 74, 273-278 (2002).
    [CrossRef]
  11. X. Liu, X. Zhou, J. B. Jeffries, and R. K. Hanson, "Experimental study of H2O spectroscopic parameters in the near-IR (6940-7440 cm(-1)) for gas sensing applications at elevated temperature," J. Quant. Spectrosc. Radiat. Transf. 103, 565-577 (2007).
    [CrossRef]
  12. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005).
    [CrossRef] [PubMed]
  13. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
    [CrossRef]
  14. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. 31, 783-790 (2007).
    [CrossRef]
  15. A. R. Alfano, ed., The Supercontinuum Laser Source, 2nd ed., (Springer, New York, 2006).
    [CrossRef]
  16. J. Chou, Y. Han, and B. Jalali, "Time-Wavelength Spectroscopy for Chemical Sensing," IEEE Photon. Technol. Lett. 16, 1140-1142 (2004).
    [CrossRef]
  17. S. T. Sanders, "A wavelength-agile source for broadband sensing," Appl. Phys. B 75, 799-802 (2002).
    [CrossRef]
  18. J. W. Walewski and S. T. Sanders, "High-resolution wavelength-agile laser source based on pulsed super-continua," Appl. Phys. B 79, 415-418 (2004).
    [CrossRef]
  19. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Broad bandwidths from frequency-shifting solitons in fibers," Opt. Lett. 14, 370-372 (1989).
    [CrossRef] [PubMed]
  20. J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, "Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua," Appl. Phys. B 83, 75-79 (2006).
    [CrossRef]
  21. J. Hult, R. S. Watt, and C. F. Kaminski, "Dispersion measurement in Optical Fibres using supercontinuum pulses," J. Lightwave Technol. 25, 820-824 (2007).
    [CrossRef]
  22. G. Hartung, J. Hult, and C. F. Kaminski, "A flat flame burner for the calibration of laser thermometry techniques," Meas. Sci. Technol. 17, 2485-2493 (2006).
    [CrossRef]
  23. L. S. Rothman, D. Jacquemarta, A. Barbe,  et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96,139-204 (2005).
    [CrossRef]
  24. J. Verspecht and K. Rush, "Individual characterization of broadband sampling Oscilloscopes with a nose-to-nose calibration procedure," IEEE Trans. Instrum. Meas. 43, 347-354 (1994).
    [CrossRef]
  25. M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, and D. A. Newnham, "Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers," J. Opt. Soc. Am. B 20, 1761-1768 (2003).
    [CrossRef]

2007 (3)

X. Liu, X. Zhou, J. B. Jeffries, and R. K. Hanson, "Experimental study of H2O spectroscopic parameters in the near-IR (6940-7440 cm(-1)) for gas sensing applications at elevated temperature," J. Quant. Spectrosc. Radiat. Transf. 103, 565-577 (2007).
[CrossRef]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. 31, 783-790 (2007).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, "Dispersion measurement in Optical Fibres using supercontinuum pulses," J. Lightwave Technol. 25, 820-824 (2007).
[CrossRef]

2006 (2)

G. Hartung, J. Hult, and C. F. Kaminski, "A flat flame burner for the calibration of laser thermometry techniques," Meas. Sci. Technol. 17, 2485-2493 (2006).
[CrossRef]

J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, "Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua," Appl. Phys. B 83, 75-79 (2006).
[CrossRef]

2005 (4)

L. S. Rothman, D. Jacquemarta, A. Barbe,  et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96,139-204 (2005).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, "Development of a fast temperature sensor for combustion gases using a single tunable diode laser," Appl. Phys. B 81, 711-722 (2005).
[CrossRef]

L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, "Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor," Appl. Opt. 44, 6729-6740 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Chou, Y. Han, and B. Jalali, "Time-Wavelength Spectroscopy for Chemical Sensing," IEEE Photon. Technol. Lett. 16, 1140-1142 (2004).
[CrossRef]

J. W. Walewski and S. T. Sanders, "High-resolution wavelength-agile laser source based on pulsed super-continua," Appl. Phys. B 79, 415-418 (2004).
[CrossRef]

2003 (3)

2002 (3)

S. T. Sanders, "A wavelength-agile source for broadband sensing," Appl. Phys. B 75, 799-802 (2002).
[CrossRef]

A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, and M. Scotoni, "Resonant photoacoustic simultaneous detection of methane and ethylene by means of a 1.63-μm diode laser," Appl. Phys. B 74, 273-278 (2002).
[CrossRef]

P. A. Martin, "Near-infrared diode laser spectroscopy in chemical process and environemental air monitoring," Chem. Soc. Rev. 31, 201-210 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
[CrossRef]

1998 (1)

M. G. Allen, "Diode laser absorption sensors for gas-dynamic and combustion flows," Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

1997 (1)

1994 (1)

J. Verspecht and K. Rush, "Individual characterization of broadband sampling Oscilloscopes with a nose-to-nose calibration procedure," IEEE Trans. Instrum. Meas. 43, 347-354 (1994).
[CrossRef]

1989 (1)

Appl. Opt. (2)

Appl. Phys. B (5)

J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, "Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua," Appl. Phys. B 83, 75-79 (2006).
[CrossRef]

S. T. Sanders, "A wavelength-agile source for broadband sensing," Appl. Phys. B 75, 799-802 (2002).
[CrossRef]

J. W. Walewski and S. T. Sanders, "High-resolution wavelength-agile laser source based on pulsed super-continua," Appl. Phys. B 79, 415-418 (2004).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, "Development of a fast temperature sensor for combustion gases using a single tunable diode laser," Appl. Phys. B 81, 711-722 (2005).
[CrossRef]

A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, and M. Scotoni, "Resonant photoacoustic simultaneous detection of methane and ethylene by means of a 1.63-μm diode laser," Appl. Phys. B 74, 273-278 (2002).
[CrossRef]

Chem. Soc. Rev. (1)

P. A. Martin, "Near-infrared diode laser spectroscopy in chemical process and environemental air monitoring," Chem. Soc. Rev. 31, 201-210 (2002).
[CrossRef] [PubMed]

Electron. Lett. (1)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Chou, Y. Han, and B. Jalali, "Time-Wavelength Spectroscopy for Chemical Sensing," IEEE Photon. Technol. Lett. 16, 1140-1142 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. Verspecht and K. Rush, "Individual characterization of broadband sampling Oscilloscopes with a nose-to-nose calibration procedure," IEEE Trans. Instrum. Meas. 43, 347-354 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (2)

L. S. Rothman, D. Jacquemarta, A. Barbe,  et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96,139-204 (2005).
[CrossRef]

X. Liu, X. Zhou, J. B. Jeffries, and R. K. Hanson, "Experimental study of H2O spectroscopic parameters in the near-IR (6940-7440 cm(-1)) for gas sensing applications at elevated temperature," J. Quant. Spectrosc. Radiat. Transf. 103, 565-577 (2007).
[CrossRef]

Meas. Sci. Technol. (3)

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M-C. Ackman, R. Shau, and J. Rosskopf, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

M. G. Allen, "Diode laser absorption sensors for gas-dynamic and combustion flows," Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

G. Hartung, J. Hult, and C. F. Kaminski, "A flat flame burner for the calibration of laser thermometry techniques," Meas. Sci. Technol. 17, 2485-2493 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. Combust. Inst. (1)

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. 31, 783-790 (2007).
[CrossRef]

Other (2)

A. R. Alfano, ed., The Supercontinuum Laser Source, 2nd ed., (Springer, New York, 2006).
[CrossRef]

M. G. Allen, E. R. Furlong, and R. K. Hanson, "Tunable Diode Laser Sensing and Combustion Control," in Applied Combustion Diagnostics, K. Kohse-Hoinghaus, and J. B. Jeffries, eds., (Taylor and Francis, New York, 2002).

Supplementary Material (2)

» Media 1: GIF (1714 KB)     
» Media 2: GIF (1760 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental set-up for the time-resolved supercontinuum based absorption measurement (L=lens, SMF=single mode fibre, DCM=dispersion compensating module, PD=photo-diode, Osc=oscilloscope, OSA=optical spectrum analyzer).

Fig. 2.
Fig. 2.

Spectral profile of the supercontinuum radiation generated in the single-mode fibre (pump pulse energy: 0.85 µJ, pump pulse centre wavelength: 1064 nm).

Fig. 3.
Fig. 3.

Experimentally determined a) dispersion curve and b) transmission curve of the dispersion compensating module employed for turning the supercontinuum pulse into a wavelength sweep.

Fig. 4.
Fig. 4.

Intensity of the dispersed supercontinuum pulse, transmitted through a CH4/air mixture. The absorption peaks around 1650 nm correspond to CH4 and around 1400 nm to H2O.

Fig. 5.
Fig. 5.

(a) Intensity of the dispersed supercontinuum pulse transmitted though a CH4/air mixture, detected using the oscilloscope. The solid line corresponds to an average of 1000 wavelength scans, and the standard deviation of the transmitted intensity is indicated by the shaded area. (b) Experimental CH4 absorbance spectrum, recorded using the oscilloscope. The acquisition time for this 80 nm wide spectrum was 0.9 ms. (c) The corresponding spectrum measured using an OSA, featuring a spectral resolution of 15 pm. (d) A theoretical spectrum, based on line parameters for CH4 obtained from the HiTran database, calculated at the experimental pressure (1 atmoshpere) and temperature (296 K). Both the OSA and HiTran spectra were convolved with Gaussian kernels (FWHM=36 pm and FWHM=39 pm, respectively) to match the resolution of the time resolved measurement in b).

Fig. 6.
Fig. 6.

(1.8 MB). Movie showing a magnified view of the R-branch lines of the 2ν3 transition in CH4. [Media 1]

Fig. 7.
Fig. 7.

Magnified view of one of the CH4 absorption peaks visible in the transmission spectrum in Fig. 5(a). The experimental transmission spectrum is shown in blue and the baseline fitted to this curve in green. The corresponding peak calculated using HiTran line parameters at the experimental conditions is shown in yellow. The red trace corresponds to the calculated peak convolved with a Gaussian kernel (FWHM=39 pm) to match the experimental resolution. Inset: Measured impulse response of the detection system.

Fig. 8.
Fig. 8.

(1.7 MB). Top: Movie of a continuous sequence of CH4 absorption spectra, recorded at an acquisition rate of 113 kHz. The laser repetition rate was 1.13 MHz, and each spectrum corresponds to an average of 10 spectra. Bottom: Time series of corresponding measured CH4 column density. [Media 2]

Fig. 9.
Fig. 9.

CH4 column densities measured using the dispersed supercontinuum based absorption measurement technique. Average values and observed standard deviations as a function of the amount of averaging employed are shown. The relative precision is also shown as a function of the acquisition rate.

Fig. 10.
Fig. 10.

Experimental CH4 absorbance spectrum recorded employing a total dispersion of around 4.4 ns/nm, resulting in a spectral resolution or around 22 pm. The spectrum corresponds to an average of 1000 wavelength scans, recorded in 1.8 ms. Insert: Magnified view of one of the experimental CH4 lines, a theoretical peak (based on HiTran line parameters) is also shown.

Metrics