Abstract

We present an experimental study on supercontinuum generation with high spectral power density by using a commercial nonlinear fiber amplifier. This new approach consists in the simultaneous combination of the amplification of a pulsed seed signal at 1.06 µm and its peak-power-induced spectral broadening as the optical pulse propagates along the amplifying fiber. A 750-nm broadening from 1 µm to 1.75 µm with tunable spectral power density according to the amplifier gain level is obtained. Spectral power density in excess of 3 mW/nm is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave, high-power, Raman continuum generation in holey fibers

A. V. Avdokhin, S. V. Popov, and J. R. Taylor
Opt. Lett. 28(15) 1353-1355 (2003)

Generation of multiwatt, broadband continua in holey fibers

P. A. Champert, S. V. Popov, and J. R. Taylor
Opt. Lett. 27(2) 122-124 (2002)

Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source

J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson
Opt. Express 10(8) 382-387 (2002)

References

  • View by:
  • |
  • |
  • |

  1. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
    [Crossref]
  2. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
    [Crossref] [PubMed]
  3. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [Crossref]
  4. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
    [Crossref]
  5. I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, “Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping,” Appl. Opt. 35, 2548–2553 (1996).
    [Crossref] [PubMed]
  6. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
    [Crossref] [PubMed]
  7. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [Crossref] [PubMed]
  8. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [Crossref]
  9. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
    [Crossref] [PubMed]
  10. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous wave, high power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
    [Crossref] [PubMed]
  11. P. A. Champert, V. Couderc, and A. Barthélémy, “1.5–2.0 µm, multi-watt, continuum generation in dispersion shifted fiber by use of high power continuous-wave fiber source,” Photon. Technol. Lett. 16, 2445–2447 (2004).
    [Crossref]
  12. T. Sekikawa, T. Kumazaki, Y. Kobayashi, Y. Nabekawa, and S. Watanabe, “Femtosecond extreme-ultraviolet quasi-continuum generation by an intense femtosecond Ti:sapphire laser,” J. Opt. Soc. Am. B 15, 1406–1409 (1998).
    [Crossref]
  13. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [Crossref]
  14. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  15. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
    [Crossref]
  16. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
    [Crossref]
  17. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
    [Crossref] [PubMed]
  18. I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, “Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping,” Appl. Opt. 35, 2548–2553 (1996).
    [Crossref] [PubMed]
  19. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-Switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
    [Crossref] [PubMed]
  20. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, “Tunable, femtosecond pulse source operating in the range 1.06–1.33 um based on an Yb3+-doped holey fiber amplifier,” J. Opt. Soc. Am. B 19, 1286–1294 (2002).
    [Crossref]
  21. A. Roy, P. Leproux, P. Roy, J. L. Auguste, and V. Couderc, “Supercontinuum generation in a nonlinear Yb-doped, double-clad, microstructured fiber,” J. Opt. Soc. Am. B 24, 788–791 (2007).
    [Crossref]
  22. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [Crossref] [PubMed]
  23. G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured optical fibers,” Opt. Lett. 30, 756–758 (2005).
    [Crossref] [PubMed]
  24. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
    [Crossref] [PubMed]
  25. A. Ishikura, Y. Kato, and M. Miyauchi, “Taper splice method for single-mode fibers,” Appl. Opt. 25, 3460–3465 (1986).
    [Crossref] [PubMed]
  26. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30, 3132–3134 (2005).
    [Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (3)

2004 (3)

2003 (2)

2002 (2)

2001 (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (2)

1997 (1)

1996 (2)

1987 (1)

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
[Crossref]

1986 (1)

1983 (1)

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

1972 (1)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Alfano, R. R.

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
[Crossref]

Andersen, T. V.

Auguste, J. L.

Avdokhin, A. V.

Baldeck, P. L.

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
[Crossref]

Bang, O.

Barthélémy, A.

P. A. Champert, V. Couderc, and A. Barthélémy, “1.5–2.0 µm, multi-watt, continuum generation in dispersion shifted fiber by use of high power continuous-wave fiber source,” Photon. Technol. Lett. 16, 2445–2447 (2004).
[Crossref]

Bennett, P. J.

Biancalana, F.

Birks, T. A.

Bjarklev, A.

Broderick, N. G. R.

Champert, P. A.

P. A. Champert, V. Couderc, and A. Barthélémy, “1.5–2.0 µm, multi-watt, continuum generation in dispersion shifted fiber by use of high power continuous-wave fiber source,” Photon. Technol. Lett. 16, 2445–2447 (2004).
[Crossref]

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[Crossref] [PubMed]

Chau, A. H. L.

Chernikov, S. V.

Coen, S.

Couderc, V.

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Février, S.

Fork, R. L.

Froehly, C.

Frosz, M. H.

Furusawa, K.

Gapontsev, V. P.

Genty, G.

George, A. K.

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Harvey, J. D.

Hirlimann, C.

Ilev, I.

Ishikura, A.

Joly, N.

Kato, Y.

Knight, J. C.

Kobayashi, Y.

Koprinkov, I.

Kudlinski, A.

Kumagai, H.

Kumazaki, T.

Labonté, L.

Lau, A.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Lefort, L.

Lehtonen, M.

Lenz, K.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Leonhardt, R.

Leproux, P.

Limpert, J.

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Ludvigsen, H.

Maillotte, H.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
[Crossref] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Miyauchi, M.

Mogilevtsev, D.

Monro, T. M.

Mussot, A.

Nabekawa, Y.

Nérin, P.

Pfeiffer, M.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Popov, S. V.

Price, J. H. V.

Provino, L.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
[Crossref] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Ranka, J. K.

Richardson, D. J.

Roy, A.

Roy, P.

Rulkov, A. B.

Russell, P. St. J.

Schimpf, D.

Schreiber, T.

Sekikawa, T.

Shank, C. V.

Stentz, A. J.

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Sylvestre, T.

Taylor, J. R.

Thuy, C. D.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Tombelaine, V.

Tomlinson, W. J.

Toyoda, K.

Travers, J. C.

Tünnermann, A.

Wadsworth, W. J.

Watanabe, S.

Weigmann, H. J.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Werncke, W.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Windeler, R. S.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

Yen, R.

Zhu, Y.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

J. Lightwave Technol. (1)

P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30, 3132–3134 (2005).
[Crossref] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured optical fibers,” Opt. Lett. 30, 756–758 (2005).
[Crossref] [PubMed]

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
[Crossref] [PubMed]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
[Crossref]

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-Switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
[Crossref] [PubMed]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous wave, high power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
[Crossref] [PubMed]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
[Crossref] [PubMed]

Photon. Technol. Lett. (1)

P. A. Champert, V. Couderc, and A. Barthélémy, “1.5–2.0 µm, multi-watt, continuum generation in dispersion shifted fiber by use of high power continuous-wave fiber source,” Photon. Technol. Lett. 16, 2445–2447 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental set-up

Fig. 2.
Fig. 2.

Example of output pulses provided by the nanosecond Q-switched laser source; a) pulse temporal profile (45-ns duration); b) repetition rate (~10 kHz); c) spectral profile (0.6-nm linewidth @ - 3 dB)

Fig. 3.
Fig. 3.

Spectra measured at the output of the nonlinear amplifier versus pump power. The repetition rate of the Q-switched laser source is set at 10 kHz. Pout refers to the output average power.

Metrics