Abstract

We present an experimental study on supercontinuum generation with high spectral power density by using a commercial nonlinear fiber amplifier. This new approach consists in the simultaneous combination of the amplification of a pulsed seed signal at 1.06 µm and its peak-power-induced spectral broadening as the optical pulse propagates along the amplifying fiber. A 750-nm broadening from 1 µm to 1.75 µm with tunable spectral power density according to the amplifier gain level is obtained. Spectral power density in excess of 3 mW/nm is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987).
    [CrossRef]
  2. A. Mussot, T. Sylvestre, L. Provino and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
    [CrossRef] [PubMed]
  3. C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
    [CrossRef]
  4. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann and C. D. Thuy, "An anomalous frequency broadening in water," Opt. Commun. 4, 413-415 (1972).
    [CrossRef]
  5. I. Ilev, H. Kumagai, K. Toyoda and I. Koprinkov, "Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping," Appl. Opt. 35, 2548-2553 (1996).
    [CrossRef] [PubMed]
  6. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly and P. Nérin, "White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system," Opt. Express 12, 4366-4371 (2004).
    [CrossRef] [PubMed]
  7. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen and W. J. Tomlinson, "Femtosecond white-light continuum pulses," Opt. Lett. 8, 1-3 (1983).
    [CrossRef] [PubMed]
  8. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  9. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  10. A. V. Avdokhin, S. V. Popov and J. R. Taylor, "Continuous wave, high power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
    [CrossRef] [PubMed]
  11. P. A. Champert, V. Couderc and A. Barthélémy, "1.5-2.0 µm, multi-watt, continuum generation in dispersion shifted fiber by use of high power continuous-wave fiber source," Photon. Technol. Lett. 16, 2445-2447 (2004).
    [CrossRef]
  12. T. Sekikawa, T. Kumazaki, Y. Kobayashi, Y. Nabekawa and S. Watanabe, "Femtosecond extreme-ultraviolet quasi-continuum generation by an intense femtosecond Ti:sapphire laser," J. Opt. Soc. Am. B 15, 1406-1409 (1998).
    [CrossRef]
  13. N. G. R. Broderick, T. M. Monro, P. J. Bennett and D. J. Richardson, "Nonlinearity in holey optical fibers: measurement and future opportunities," Opt. Lett. 24, 1395-1397 (1999).
    [CrossRef]
  14. J. K. Ranka, R. S. Windeler and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  15. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fibre," Electron. Lett. 37, 558-560 (2001).
    [CrossRef]
  16. D. Mogilevtsev, T. A. Birks and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23,1662-1664 (1998).
    [CrossRef]
  17. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
    [CrossRef] [PubMed]
  18. I. Ilev, H. Kumagai, K. Toyoda and I. Koprinkov, "Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping," Appl. Opt. 35, 2548-2553 (1996).
    [CrossRef] [PubMed]
  19. S. V. Chernikov, Y. Zhu, J. R. Taylor and V. P. Gapontsev, "Supercontinuum self-Q-Switched ytterbium fiber laser," Opt. Lett. 22,298-300 (1997).
    [CrossRef] [PubMed]
  20. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06-1.33 um based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286-1294 (2002).
    [CrossRef]
  21. A. Roy, P. Leproux, P. Roy, J. L. Auguste and V. Couderc, "Supercontinuum generation in a nonlinear Yb-doped, double-clad, microstructured fiber," J. Opt. Soc. Am. B 24, 788-791 (2007).
    [CrossRef]
  22. M. H. Frosz, O. Bang and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
    [CrossRef] [PubMed]
  23. G. Genty, M. Lehtonen and H. Ludvigsen, "Route to broadband blue-light generation in microstructured optical fibers," Opt. Lett. 30, 756-758 (2005).
    [CrossRef] [PubMed]
  24. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert and A. Tünnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13, 9556-9569 (2005).
    [CrossRef] [PubMed]
  25. A. Ishikura, Y. Kato and M. Miyauchi, "Taper splice method for single-mode fibers," Appl. Opt. 25, 3460-3465 (1986).
    [CrossRef] [PubMed]
  26. J. C. Travers, S. V. Popov and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (2)

2005 (3)

2004 (3)

2003 (2)

2002 (2)

2001 (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fibre," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

1997 (1)

1996 (2)

1987 (1)

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987).
[CrossRef]

1986 (1)

1983 (1)

1976 (1)

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

1972 (1)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann and C. D. Thuy, "An anomalous frequency broadening in water," Opt. Commun. 4, 413-415 (1972).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, "New nanosecond continuum for excited-state spectroscopy," Appl. Phys. Lett. 28, 216-218 (1976).
[CrossRef]

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fibre," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

J. Lightwave Technol. (1)

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann and C. D. Thuy, "An anomalous frequency broadening in water," Opt. Commun. 4, 413-415 (1972).
[CrossRef]

Opt. Express (5)

Opt. Lett. (9)

J. C. Travers, S. V. Popov and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen and H. Ludvigsen, "Route to broadband blue-light generation in microstructured optical fibers," Opt. Lett. 30, 756-758 (2005).
[CrossRef] [PubMed]

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen and W. J. Tomlinson, "Femtosecond white-light continuum pulses," Opt. Lett. 8, 1-3 (1983).
[CrossRef] [PubMed]

N. G. R. Broderick, T. M. Monro, P. J. Bennett and D. J. Richardson, "Nonlinearity in holey optical fibers: measurement and future opportunities," Opt. Lett. 24, 1395-1397 (1999).
[CrossRef]

J. K. Ranka, R. S. Windeler and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

D. Mogilevtsev, T. A. Birks and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23,1662-1664 (1998).
[CrossRef]

S. V. Chernikov, Y. Zhu, J. R. Taylor and V. P. Gapontsev, "Supercontinuum self-Q-Switched ytterbium fiber laser," Opt. Lett. 22,298-300 (1997).
[CrossRef] [PubMed]

A. V. Avdokhin, S. V. Popov and J. R. Taylor, "Continuous wave, high power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

A. Mussot, T. Sylvestre, L. Provino and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

Photon. Technol. Lett. (1)

P. A. Champert, V. Couderc and A. Barthélémy, "1.5-2.0 µm, multi-watt, continuum generation in dispersion shifted fiber by use of high power continuous-wave fiber source," Photon. Technol. Lett. 16, 2445-2447 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental set-up

Fig. 2.
Fig. 2.

Example of output pulses provided by the nanosecond Q-switched laser source; a) pulse temporal profile (45-ns duration); b) repetition rate (~10 kHz); c) spectral profile (0.6-nm linewidth @ - 3 dB)

Fig. 3.
Fig. 3.

Spectra measured at the output of the nonlinear amplifier versus pump power. The repetition rate of the Q-switched laser source is set at 10 kHz. Pout refers to the output average power.

Metrics