Abstract

A neodymium doped microstructured large mode area fiber is frequency locked with a volume Bragg grating. This configuration is compared with a conventional fiber laser setup. A high efficiency (51% slope), stable output and a drastically narrowed linewidth (<0.07nm) are achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. M. Steen, Laser Material Processing, Third Edition, (Springer, 2003).
  2. O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Spectral beam combining of fiber lasers with increased channel density," Proc. SPIE 6453,64531L (2007).
    [CrossRef]
  3. Y. Kaneda, L. Fan, T. C. Hsu, N. Peyghambarian, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stoltz, and S. Koch, "High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers,"IEEE Photon. Technol. Lett. 18, 1795-1797 (2006).
    [CrossRef]
  4. M. Zurn, J. Voigt, E. Brinkmeyer, R. Ulrich, and S. B. Poole, "Line narrowing and spectral hole burning in single-mode Nd3+-fiber lasers,"Opt. Lett. 12, 316 (1987).
    [CrossRef] [PubMed]
  5. B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing,"Opt. Express,  11, 3412-3417 (2003).
    [PubMed]
  6. D. J. Richardson, F. Poletti, J. J. Y. Leong, X. Feng, H. E. Heidepreim, H. V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. V. H. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, "Advances in microstructured fiber technology," Proc. IEEE Fibres and Optical Passive Components. 1-9. (2005).
    [CrossRef]
  7. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V.I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass,"Appl. Opt.,  38, 619-627 (1999).
    [CrossRef]
  8. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,"Opt. Lett. 29, 1891-1893 (2004).
    [CrossRef] [PubMed]
  9. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating,"Opt. Express 15, 1003-1010 (2007).
    [CrossRef] [PubMed]
  10. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,"Opt. Lett. 31, 1663-1665 (2006).
    [CrossRef] [PubMed]
  11. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator,"Opt. Lett. 30, 2281-2283 (2005).
    [CrossRef] [PubMed]
  12. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,"Opt. Express 14, 9284-9292 (2006).
    [CrossRef] [PubMed]
  13. P. Glas, D. Fischer, M. Moenster, G. Steinmeyer, R. Iliew, C. Etrich, M. Kreitel, L.-E. Nilsson, and R. Köppler, "Large-mode-area Nd-doped single-transversemode dual-wavelength microstructure fiber laser,"Opt. Express 13, 7884-7892 (2005).
    [CrossRef] [PubMed]
  14. O. Andrusyak, I. Ciapurin, A. Sevian, V. Smirnov, G. Venus, and L. Glebov, "Power scaling of laser systems using spectral beam combining with Volume Bragg Gratings in PTR Glass, in CLEO. 2007: Baltimore.

2007 (2)

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Spectral beam combining of fiber lasers with increased channel density," Proc. SPIE 6453,64531L (2007).
[CrossRef]

B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating,"Opt. Express 15, 1003-1010 (2007).
[CrossRef] [PubMed]

2006 (3)

B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,"Opt. Lett. 31, 1663-1665 (2006).
[CrossRef] [PubMed]

B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,"Opt. Express 14, 9284-9292 (2006).
[CrossRef] [PubMed]

Y. Kaneda, L. Fan, T. C. Hsu, N. Peyghambarian, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stoltz, and S. Koch, "High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers,"IEEE Photon. Technol. Lett. 18, 1795-1797 (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (1)

1999 (1)

1987 (1)

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

Y. Kaneda, L. Fan, T. C. Hsu, N. Peyghambarian, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stoltz, and S. Koch, "High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers,"IEEE Photon. Technol. Lett. 18, 1795-1797 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Proc. SPIE (1)

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Spectral beam combining of fiber lasers with increased channel density," Proc. SPIE 6453,64531L (2007).
[CrossRef]

Other (3)

W. M. Steen, Laser Material Processing, Third Edition, (Springer, 2003).

D. J. Richardson, F. Poletti, J. J. Y. Leong, X. Feng, H. E. Heidepreim, H. V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. V. H. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, "Advances in microstructured fiber technology," Proc. IEEE Fibres and Optical Passive Components. 1-9. (2005).
[CrossRef]

O. Andrusyak, I. Ciapurin, A. Sevian, V. Smirnov, G. Venus, and L. Glebov, "Power scaling of laser systems using spectral beam combining with Volume Bragg Gratings in PTR Glass, in CLEO. 2007: Baltimore.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic view of the experimental setup. The lenses L1and L2 constitute a telescope to mode match the Ti:Sapphire laser pump to the fiber. L3 and L4 are used to collimate the beam out of the fiber. A dichroic mirror was inserted between L2 and L3 to couple out the signal.

Fig. 2.
Fig. 2.

The input-output characteristic of the fiber laser using mirror or VBG as the back reflector. Both the mirror and VBG had a reflectivity of R=99%.

Fig. 3.
Fig. 3.

Comparison between the spectral output of the VBG and mirror setup. The dotted black curve shows the spectrum of the mirror based setup. The width of the spectrum was >7nm and fluctuating. The solid red curve shows the spectral output of the VGB based setup. The spectrum is centered around 1066nm with a linewidth of <0.07nm.

Metrics