Abstract

We demonstrate a tunable focus liquid crystal (LC) lens by sandwiching a homogeneous LC layer between a planar electrode and a curved electrode. The curved electrode which is made of conductive polymer has parabolic shape with a large apex distance. Such design dramatically reduces the phase loss which leads to a short focal length (~15 cm). By using a thin top glass substrate on the curved electrode side, the operating voltage of the lens cell for achieving the shortest focal length is reduced to ~23 Vrms. This LC lens has advantages in large focal length tunability, low operating voltage, and good mechanical stability.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
    [CrossRef]
  2. H. Ren, D. W. Fox, P. A. Anderson, B. Wu, and S. T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006).
    [CrossRef] [PubMed]
  3. H. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express 15, 5931-5936 (2007).
    [CrossRef] [PubMed]
  4. W. L. IJzerman, S. T. de Zwart, and T. Dekker, "Design of 2D/3D switchable displays," SID Symposium Digest, 36, 98-101 (2005).
    [CrossRef]
  5. S. Suyama, M. Date, and H. Takada, "Three-dimensional display system with dual-frequency liquid-crystal varifocal lens," Jpn. J. Appl. Phys. Part 1,  38, 480-484 (2000).
    [CrossRef]
  6. M. Hain, R. Glockner, S. Bhattacharya, D, Dias, S. Stankovic, and T. Tschudi "Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,"Opt. Commun,  188, 291-299 (2001).
    [CrossRef]
  7. T. L. Kelly, A. F. Naumov, M. Yu. Loktev, and M. A. Rakhmatulin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
    [CrossRef]
  8. H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002).
    [CrossRef]
  9. H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
    [CrossRef]
  10. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232 -L1233 (2002).
    [CrossRef]
  11. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
    [CrossRef]
  12. B. Wang, M. Ye, and S. Sato, "Lens of electrically controllable focal length made by a glass lens and liquid crystal layers," Appl. Opt. 43, 3420-3425 (2004).
    [CrossRef] [PubMed]
  13. B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode", Mol. Cryst. Liq. Cryst.,  433, 217-227 (2005).
    [CrossRef]
  14. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, "Liquid crystal microlens arrays with switchable positive and negative focal lengths," J. Display Technology. 1, 151-156 (2005).
    [CrossRef]
  15. H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tunability," Opt. Express 14, 11292-11298 (2006).
    [CrossRef] [PubMed]
  16. I. Bruce, "Concerning drops," Am. J. Phys. 52, 1102-1105 (1984).
    [CrossRef]
  17. S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nuclear Engineering and Design 235, 1293-1301 (2005).
    [CrossRef]
  18. S. T. Wu, U. Efron, and L. D. Hess, "Birefringence measurements of liquid crystals," Appl. Opt. 23, 3911-3915 (1984).
    [CrossRef] [PubMed]
  19. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed and R. Dąbrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1,  42, 3463-3466 (2003).
    [CrossRef]
  20. A. Spadło, R. Dąbrowski, M. Filipowicz, Z. Stolarz, J. Przedmojski, S. Gauza, Y. H. Fan, and S. T. Wu "Synthesis, mesomorphic and optical properties of isothiocyanatotolanes," Liq. Cryst. 30, 191-198 (2003).
    [CrossRef]

2007

2006

2005

S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nuclear Engineering and Design 235, 1293-1301 (2005).
[CrossRef]

B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode", Mol. Cryst. Liq. Cryst.,  433, 217-227 (2005).
[CrossRef]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, "Liquid crystal microlens arrays with switchable positive and negative focal lengths," J. Display Technology. 1, 151-156 (2005).
[CrossRef]

2004

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

B. Wang, M. Ye, and S. Sato, "Lens of electrically controllable focal length made by a glass lens and liquid crystal layers," Appl. Opt. 43, 3420-3425 (2004).
[CrossRef] [PubMed]

2003

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed and R. Dąbrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1,  42, 3463-3466 (2003).
[CrossRef]

A. Spadło, R. Dąbrowski, M. Filipowicz, Z. Stolarz, J. Przedmojski, S. Gauza, Y. H. Fan, and S. T. Wu "Synthesis, mesomorphic and optical properties of isothiocyanatotolanes," Liq. Cryst. 30, 191-198 (2003).
[CrossRef]

2002

H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232 -L1233 (2002).
[CrossRef]

2001

M. Hain, R. Glockner, S. Bhattacharya, D, Dias, S. Stankovic, and T. Tschudi "Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,"Opt. Commun,  188, 291-299 (2001).
[CrossRef]

2000

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, and M. A. Rakhmatulin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
[CrossRef]

S. Suyama, M. Date, and H. Takada, "Three-dimensional display system with dual-frequency liquid-crystal varifocal lens," Jpn. J. Appl. Phys. Part 1,  38, 480-484 (2000).
[CrossRef]

1984

1979

S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

Am. J. Phys.

I. Bruce, "Concerning drops," Am. J. Phys. 52, 1102-1105 (1984).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

J. Display Technology.

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, "Liquid crystal microlens arrays with switchable positive and negative focal lengths," J. Display Technology. 1, 151-156 (2005).
[CrossRef]

Jpn. J. Appl. Phys

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed and R. Dąbrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1,  42, 3463-3466 (2003).
[CrossRef]

S. Suyama, M. Date, and H. Takada, "Three-dimensional display system with dual-frequency liquid-crystal varifocal lens," Jpn. J. Appl. Phys. Part 1,  38, 480-484 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232 -L1233 (2002).
[CrossRef]

S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

Liq. Cryst.

A. Spadło, R. Dąbrowski, M. Filipowicz, Z. Stolarz, J. Przedmojski, S. Gauza, Y. H. Fan, and S. T. Wu "Synthesis, mesomorphic and optical properties of isothiocyanatotolanes," Liq. Cryst. 30, 191-198 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst.

B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode", Mol. Cryst. Liq. Cryst.,  433, 217-227 (2005).
[CrossRef]

Nuclear Engineering and Design

S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nuclear Engineering and Design 235, 1293-1301 (2005).
[CrossRef]

Opt. Commun

M. Hain, R. Glockner, S. Bhattacharya, D, Dias, S. Stankovic, and T. Tschudi "Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,"Opt. Commun,  188, 291-299 (2001).
[CrossRef]

Opt. Commun.

T. L. Kelly, A. F. Naumov, M. Yu. Loktev, and M. A. Rakhmatulin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
[CrossRef]

Opt. Express

Other

W. L. IJzerman, S. T. de Zwart, and T. Dekker, "Design of 2D/3D switchable displays," SID Symposium Digest, 36, 98-101 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Fabrication process of parabolic electrode: (a) put a drop of prepolymer on the top substrate surface, (b) turn the substrate up-side down and cure the polymer by UV light, (c) coat a conductive polymer layer as electrode, and (d) flatten the lens surface by the same polymer.

Fig. 2.
Fig. 2.

Device structure of a LC lens cell. The top electrode is a conducting polymer and bottom electrode is ITO.

Fig. 3.
Fig. 3.

Method for measuring the lens profile.

Fig. 4.
Fig. 4.

Measured side-view profiles of two polymeric lenses fabricated according to Figs. 1(a) and 1(b).

Fig. 5.
Fig. 5.

Observed microscope interference fringes of the LC lens at (a) V=0, (b) V=5, (c) V=23, and (d) 35 Vrms.

Fig. 6.
Fig. 6.

Relative phase retardation profiles at V=5 Vrms (red) and V=23 Vrms (blue).

Fig. 7.
Fig. 7.

Imaging behavior of the LC lens at (a) V=0 and (b) V=25 Vrms.

Fig. 8.
Fig. 8.

Voltage dependent focal length of the LC lens.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E b = V ε LC ( d LC ε LC + d g ε g ) ,
E c = V ε LC ( d LC ε LC + d g ε g + d s ε p ) .
δ = 2 π d LC Δ n λ
f = r 2 2 λ N

Metrics