Abstract

A type of metallic double nanoslit with different widths is proposed to investigate Young’s interference mediated by surface plasmon polaritons (SPPs). Numerical calculations show that the Young’s interference order could be shifted readily by adjusting the width difference between two slits. Further calculations indicate that the interference order shift related to the additional phase retardation is caused by the distinct surface plasmon mode in two slits. Since the surface plasmon mode in a nanoslit is extremely sensitive to the incident wavelength, it suggests a potential way of ultrahigh resolution spectral analysis via measuring the shift of Young’s interference.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  2. K. G. Lee and Q. Park, "Coupling of surface plasmon polaritons and light in metallic nanoslits," Phys. Rev. Lett. 95, 103902 (2005).
    [CrossRef] [PubMed]
  3. L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14, 12629-12636 (2006).
    [CrossRef] [PubMed]
  4. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young's experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
    [CrossRef] [PubMed]
  5. R. Welti, "Light transmission through two slits: the Young experiment revisited," J. Opt. A: Pure Appl. Opt. 8, 606-609 (2006).
    [CrossRef]
  6. R.  Gordon, "Near-field interference in a subwavelength double slit in a perfect conductor," J. Opt. A: Pure Appl. Opt.  8, L1-L3 (2006).
    [CrossRef]
  7. K. Chae, H. Lee, S. Yim, and S. Park, "Evolution of electromagnetic interference through nano-metallic double-slit," Opt. Express 12, 2870-2879 (2004).
    [CrossRef] [PubMed]
  8. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, "Near-field analysis of surface waves launched at nanoslit apertures," Phys. Rev. Lett. 98, 153902 (2007).
    [CrossRef] [PubMed]
  9. R. Zia and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotechnology 2, 426-429 (2007)
    [CrossRef]
  10. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures," Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  11. B. Ung and Y. Sheng, "Interference of surface waves in a metallic nanoslit," Opt. Express 15, 1182-1190 (2007).
    [CrossRef] [PubMed]
  12. J. Wuenschell and H. K. Kim, "Surface plasmon dynamics in an isolated metallic nanoslit," Opt. Express 14, 10000-10013 (2006).
    [CrossRef] [PubMed]
  13. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  14. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
    [CrossRef] [PubMed]
  15. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).
    [CrossRef] [PubMed]

2007 (3)

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, "Near-field analysis of surface waves launched at nanoslit apertures," Phys. Rev. Lett. 98, 153902 (2007).
[CrossRef] [PubMed]

R. Zia and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotechnology 2, 426-429 (2007)
[CrossRef]

B. Ung and Y. Sheng, "Interference of surface waves in a metallic nanoslit," Opt. Express 15, 1182-1190 (2007).
[CrossRef] [PubMed]

2006 (4)

J. Wuenschell and H. K. Kim, "Surface plasmon dynamics in an isolated metallic nanoslit," Opt. Express 14, 10000-10013 (2006).
[CrossRef] [PubMed]

R. Welti, "Light transmission through two slits: the Young experiment revisited," J. Opt. A: Pure Appl. Opt. 8, 606-609 (2006).
[CrossRef]

R.  Gordon, "Near-field interference in a subwavelength double slit in a perfect conductor," J. Opt. A: Pure Appl. Opt.  8, L1-L3 (2006).
[CrossRef]

L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14, 12629-12636 (2006).
[CrossRef] [PubMed]

2005 (4)

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young's experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

K. G. Lee and Q. Park, "Coupling of surface plasmon polaritons and light in metallic nanoslits," Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures," Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

R. Welti, "Light transmission through two slits: the Young experiment revisited," J. Opt. A: Pure Appl. Opt. 8, 606-609 (2006).
[CrossRef]

R.  Gordon, "Near-field interference in a subwavelength double slit in a perfect conductor," J. Opt. A: Pure Appl. Opt.  8, L1-L3 (2006).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Nature Nanotechnology (1)

R. Zia and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotechnology 2, 426-429 (2007)
[CrossRef]

Opt. Express (6)

Phys. Rev. Lett. (4)

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young's experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

K. G. Lee and Q. Park, "Coupling of surface plasmon polaritons and light in metallic nanoslits," Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures," Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, "Near-field analysis of surface waves launched at nanoslit apertures," Phys. Rev. Lett. 98, 153902 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of metallic double nanoslit with different widths.

Fig. 2.
Fig. 2.

(a) Near-field |Hy| distribution pattern, a 1=a 2=100 nm. (b) Far-field divergence angle, a 1=a 2=100 nm. (c) Near-field |Hy| distribution pattern, a 1=100 nm and a 2=25 nm. (d) Far-field divergence angle, a 1=100 nm and a 2=25 nm.

Fig. 3.
Fig. 3.

(a) Far-field divergence angle with different a2 . (b) Fringe positions versus slit width differences.

Fig. 4.
Fig. 4.

(a) Far-field divergence angle of variant film thicknesses. (b) Fringe positions versus film thicknesses. (Color symbols and lines: simulated results. Black lines: theoretical results).

Fig. 5.
Fig. 5.

(a) Near-field |Hy| distribution pattern, d=2.0µm. (b) Near-field |Hy| distribution pattern, d=2.8µm. (c) Far-field divergence angle of variant slit distances.

Fig. 6.
Fig. 6.

Effective refractive index of surface plasmon mode in metallic nanoslit with variant widths and wavelengths.

Metrics