Abstract

We report on the first realization of a hyperspectral imaging technique for surface plasmon polaritons on metallic nanostructures. The technique uses a scanning electron beam and allows for simple visualization of light emission from decoupled plasmons, providing information on decay lengths and feature sizes with nanometer resolution.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  2. V. M. Shalaev and S.  Kawata, eds. Nanophotonics with Surface Plasmons (Elsevier, Amsterdam, 2007)
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics", Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
    [CrossRef]
  5. R.  Zia, J. A. Schuller, A.  Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
    [CrossRef]
  6. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, and N. I. Zheludev, Y. Chen, M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
    [CrossRef] [PubMed]
  7. J. T. van Wijngaarden, E. Verhagen, and A. Polman, C. E. Ross, H. J. Lezec and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
    [CrossRef]
  8. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
    [CrossRef]
  9. E. D. Palik, ed. Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  10. A. V. Krasavin, K. F. MacDonald and N. I. Zheludev, "Active Plasmonics," in Nanophotonics with Surface Plasmons, V. M. Shalaev and S. Kawata, ed. (Elsevier, Amsterdam, 2007).

2006

R.  Zia, J. A. Schuller, A.  Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
[CrossRef]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, and N. I. Zheludev, Y. Chen, M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

J. T. van Wijngaarden, E. Verhagen, and A. Polman, C. E. Ross, H. J. Lezec and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

2005

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics", Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

1998

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Appl. Phys. Lett.

J. T. van Wijngaarden, E. Verhagen, and A. Polman, C. E. Ross, H. J. Lezec and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Materials Today

R.  Zia, J. A. Schuller, A.  Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
[CrossRef]

Nano Lett.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, and N. I. Zheludev, Y. Chen, M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics", Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Remote Sens. Environ.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998).
[CrossRef]

Other

E. D. Palik, ed. Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).

A. V. Krasavin, K. F. MacDonald and N. I. Zheludev, "Active Plasmonics," in Nanophotonics with Surface Plasmons, V. M. Shalaev and S. Kawata, ed. (Elsevier, Amsterdam, 2007).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

V. M. Shalaev and S.  Kawata, eds. Nanophotonics with Surface Plasmons (Elsevier, Amsterdam, 2007)

Supplementary Material (2)

» Media 1: MOV (3135 KB)     
» Media 2: MOV (3563 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The hyperspectral imaging concept illustrated for a grating on a gold film. At each electron beam injection point in the sample (x-y) plane, i.e. each image pixel, the entire emission spectrum from decoupled surface plasmons is sampled simultaneously at a number of discrete wavelengths λ k . (b) The data cube generated can be mined to produce single-wavelength spatial intensity distributions of plasmonic emission (x-y planes), point spectra (vertical lines), and wavelength-specific linear emission intensity profiles (horizontal lines).

Fig. 2.
Fig. 2.

Hyperspectral imaging light-collection geometries and angular decoupling diagrams for the gratings imaged in each configuration. (a) The wide-angle light-collection geometry with its acceptance window, -70°<θ<30°, mapped onto the 400 nm period grating’s decoupling diagram. (b) The narrow-angle collection geometry with its acceptance window, -82° <θ<-67°, mapped onto the 450 nm period grating’s decoupling diagram. (Note that the two mirrors are drawn to different scales to achieve the correct schematic mapping of their acceptance windows onto the decoupling diagrams.)

Fig. 3.
Fig. 3.

(Movie: 3.1 MB) Hyperspectral imaging of the 400 nm gold grating sample with the wide-angle parabolic light-collection mirror. (a) Secondary electron image of the sample area, encompassing grating and adjacent unstructured gold film, which was imaged in hyperspectral mode. (b, c and d) Spatial plasmonic emission intensity distributions obtained by slicing the hyperspectral data cube in the x-y plane (averaged over 7 nm wavelength intervals), with corresponding average emission intensity profiles along the x direction: (b) 517–524 nm, where the grating is weakly resonant and plasmon decoupling efficiency is relatively poor; (c) 617–625 nm, where the grating is resonant and efficiently decouples plasmons to optical radiation; (d) 1030–1037 nm, where emission is negligible. The insets to (a) shows a high-resolution image of a small part of the grating. The inset to (c) shows the corresponding emission intensity distribution at 617–625 nm, wherein the grating structure is resolved. [Media 1]

Fig. 4.
Fig. 4.

(Movie: 3.5 MB) Hyperspectral imaging of the 450 nm gold grating sample with the narrow-angle parabolic light-collection mirror. (a) Secondary electron image of the sample area, encompassing grating and adjacent unstructured gold film, which was imaged in hyperspectral mode. (b, c and d) Spatial plasmonic emission intensity distributions obtained by slicing the hyperspectral data cube in the x-y plane (averaged over 7 nm wavelength intervals), with corresponding average emission intensity profiles along the x direction: (b) 730–737 nm, where the grating inhibits background emission at angles within the mirror’s acceptance window.; (c) 835–842 nm, where the grating is resonant and efficiently decouples plasmons to optical radiation; (d) 1030–1037 nm, where emission is negligible. [Media 2]

Fig. 5.
Fig. 5.

Single point spectra and surface plasmon decay lengths extracted from the hyperspectral imaging data cubes. Single-pixel spectra for points within: (a) the 400 nm period grating, recorded with the wide-angle light-collection geometry; (b) the 450 nm grating, recorded with the narrow-angle geometry. Linear emission intensity profiles along the x-direction (perpendicular to the grating lines), averaged over all values of y, for: (c) the 400 nm grating sample at λ1=600 nm; (d) the 450 nm grating sample at λ2=830 nm. Distances along x are measured relative to the edge of the gratings. Plasmon decay lengths δ are determined from exponential fittings to the data. The bold arrows in each figure’s inset show the line(s) along which data is extracted from the cube to obtain the corresponding curve.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Re { k SPP ( ω ) } n k G = ( ω c ) sin ( θ ( ω ) ) ,

Metrics