Abstract

In this paper, a bandpass transmission filter realized in phase-shifted waveguide gratings based on photonic crystals (PCs) is proposed. Phase-shift regions each composed of one period of photonic crystal (PC) waveguide are incorporated into PC waveguide gratings. The magnitudes of the phase-shifts are modified by involving small changes in the size of the border rods in the phase-shift regions. Using standard coupled-mode theory and finite-difference time-domain (FDTD) method, we show that by properly choosing the magnitudes of phase-shifts and the lengths of waveguide gratings, a flat-top and sharp roll-off response with a narrow bandwidth is theoretically and numerically achieved by the designed filter. A further analysis shows that the center frequency of the transmission band can be changed by altering the magnitude of the phase-shift and the response performance exhibits relaxed sensitivity to the phase-shift variation. As a specific application, we theoretically demonstrate a third-order Chebyshev bandpass filter based on compound phase-shifted PC waveguide gratings. The filter performance is suitable for dense wavelength-division-multiplexed (DWDM) optical communication systems with a channel spacing of 100-GHz.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John. "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H.A. Haus, "Channel drop filters in photonic crystals" Opt. Express 3, 4-11 (1998).
    [CrossRef] [PubMed]
  6. R. Costa, A. Melloni, and M. Martinelli, "Bandpass resonant filters in photonic-crystal waveguides," IEEE Photon. Technol. Lett. 15, 401-403 (2003).
    [CrossRef]
  7. D. Park, S. Kim, I. Park, and H. Lim, "Higher order optical resonant filters based on coupled defect resonators in photonic crystals," J. Lightwave Technol. 23, 1923-1928 (2005).
    [CrossRef]
  8. G. P. Agrawal and S. Radic, "Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994).
    [CrossRef]
  9. R. Zengerle and O. Leminger, "Phase-shifted Bragg-gratings filters with improved transmission characteristics" J. Lightwave Technol. 13, 2354-2358 (1995).
    [CrossRef]
  10. T. Fujisawa and M. Koshiba, "An analysis of photonic crystal waveguide gratings using coupled-mode theory and finite-element method," Appl. Opt. 45, 4114-4121 (2006).
    [CrossRef] [PubMed]
  11. N. Yokoi, T. Fujisawa, K. Saitoh, and M. Koshiba, "Apodized photonic crystal waveguide gratings," Opt. Express 14, 4459-4468 (2006).
    [CrossRef] [PubMed]
  12. C. Chen, X. Li, K. Xu, J. Wu, and J. Lin, "Photonic crystal waveguide sampled gratings," Opt. Comm. 276, 237-241 (2007).
    [CrossRef]
  13. H. A. Haus, Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984), pp. 235-253.
  14. A. Melloni, and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems," J. Lightwave Technol. 20, 296-303 (2002).
    [CrossRef]
  15. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973)
    [CrossRef]
  16. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  17. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
    [CrossRef]

2007 (1)

C. Chen, X. Li, K. Xu, J. Wu, and J. Lin, "Photonic crystal waveguide sampled gratings," Opt. Comm. 276, 237-241 (2007).
[CrossRef]

2006 (2)

2005 (1)

2003 (1)

R. Costa, A. Melloni, and M. Martinelli, "Bandpass resonant filters in photonic-crystal waveguides," IEEE Photon. Technol. Lett. 15, 401-403 (2003).
[CrossRef]

2002 (1)

2000 (1)

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

1998 (1)

1997 (1)

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

1995 (1)

R. Zengerle and O. Leminger, "Phase-shifted Bragg-gratings filters with improved transmission characteristics" J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

1994 (1)

G. P. Agrawal and S. Radic, "Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John. "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1973 (1)

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973)
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, "Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973)
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Costa, A. Melloni, and M. Martinelli, "Bandpass resonant filters in photonic-crystal waveguides," IEEE Photon. Technol. Lett. 15, 401-403 (2003).
[CrossRef]

G. P. Agrawal and S. Radic, "Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Comm. (1)

C. Chen, X. Li, K. Xu, J. Wu, and J. Lin, "Photonic crystal waveguide sampled gratings," Opt. Comm. 276, 237-241 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (3)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John. "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

H. A. Haus, Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984), pp. 235-253.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Single phase-shifted PC waveguide gratings.

Fig. 2.
Fig. 2.

(a) Dispersion curves of the phase-shift region for different radius r 0 of the border rods in the phase-shift region. (b) The values of the frequency ω 1 for different radius r 0 of the border rods in the phase-shift region.

Fig. 3.
Fig. 3.

Theoretically calculated transmission spectra of single phase-shifted PC waveguide gratings for different waveguide grating lengths L 1.

Fig. 4.
Fig. 4.

Three phase-shifted PC waveguide gratings.

Fig. 5.
Fig. 5.

(a) Transmission spectra of three phase-shifted PC waveguide gratings calculated theoretically. (b) Transmission spectra of three phase-shifted PC waveguide gratings calculated using 2-D FDTD method.

Fig. 6.
Fig. 6.

Transmission spectra of three phase-shifted PC waveguide gratings for different waveguide grating lengths L out.

Fig. 7.
Fig. 7.

Transmission spectra of three phase-shifted PC waveguide gratings for different radius r 0 of the border rods in the center phase-shift region.

Fig. 8.
Fig. 8.

Dependence of ripples in the passband on the radius r 0 of the border rods in the center phase-shift region.

Metrics