Abstract

We analyze the optical gain of tensile-strained, n-type Ge material for Si-compatible laser applications. The band structure of unstrained Ge exhibits indirect conduction band valleys (L) lower than the direct valley (Γ) by 136 meV. Adequate strain and n-type doping engineering can effectively provide population inversion in the direct bandgap of Ge. The tensile strain decreases the difference between the L valleys and the Γ valley, while the extrinsic electrons from n-type doping fill the L valleys to the level of the Γ valley to compensate for the remaining energy difference. Our modeling shows that with a combination of 0.25% tensile strain and an extrinsic electron density of 7.6×1019/cm3 by n-type doping, a net material gain of ~400 cm-1 can be obtained from the direct gap transition of Ge despite of the free carrier absorption loss. The threshold current density for lasing is estimated to be ~6kA cm-2 for a typical edge-emitting double heterojunction structure. These results indicate that tensile strained n-type Ge is a good candidate for Si integrated lasers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
    [CrossRef]
  2. N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
    [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
    [CrossRef] [PubMed]
  4. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
    [CrossRef]
  5. A. J. Kenyon, P F Trwoga, M Federighi, and C W Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys.: Condens. Matter 6, L319–L324 (1994).
    [CrossRef]
  6. C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
    [CrossRef]
  7. G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,”  79, 1937–1940 (1997).
  8. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
    [CrossRef] [PubMed]
  9. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
    [CrossRef]
  10. A.W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [CrossRef] [PubMed]
  11. C. L. Schow, S. J. Koester, L. Schares, G. Dehlinger, and R. A. John, “High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs,” Proc SPIE 6477, 647705-1 (2007).
  12. M. Morse, O. I. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE. Photon. Technol. Lett. 18, 2442–2444 (2006).
    [CrossRef]
  13. D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, and J. Michel, , “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007).
    [CrossRef] [PubMed]
  14. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
    [CrossRef] [PubMed]
  15. S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
    [CrossRef]
  16. O. Madelung, Physics of Group IV Elements and III–V Compounds, edited by Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin, 1982), vol. 17a.
  17. Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
    [CrossRef]
  18. J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
    [CrossRef]
  19. C. G. Van de Walle, “Band lineups and deformation potentials in model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).
    [CrossRef]
  20. V. V. Zhdanova and T. A. Kontorova, “Thermal expansion of doped Ge,” Sov. Phys. Solid. State. 7, 2685–2689 (1966).
  21. S. L. Chuang, Physics of optoelectronic devices, (Wiley, New York, 1995), Chapters 9–10.
  22. M. V. Hobalen, “Direct optical transitions from the split-off valence band to the conduction band in germanium,” J. Phys. Chem. Solids 23, 821–822 (1962).
    [CrossRef]
  23. W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-type germanium,” J. Appl. Phys. 32, 1822–1830 (1961).
    [CrossRef]
  24. C. Haas, “Infrared absorption in heavily doped n-type germanium,” Phys. Rev. 125, 1965–1971 (1962).
    [CrossRef]
  25. H. S. Sommers, “Degenerate germanium. II. Bandgap and carrier recombination,” Phys. Rev. 124, 1101–1110 (1961).
    [CrossRef]
  26. F. Lukeš and J. Humliček, “Electroreflectance of heavily doped n-type and p-type germanium near the direct gap,” Phys. Rev. B 6, 521–533 (1972).
    [CrossRef]
  27. M. J. Chen, C. S. Tsai, and M. K. Wu, “Optical gain and co-stimulated emissions of photons and phonons in indirect bandgap semiconductors,” Jpn. J. Appl. Phys. 45, 6576–6588 (2006).
    [CrossRef]
  28. R. Newman and W. W. Tyler, “Effect of impurities on free-hole infrared absorption in p-type germanium,”. Phys. Rev. 105, 885–886 (1957).
    [CrossRef]
  29. L. Di Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, and F. Evangelisti, “Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation,” Appl. Surf. Sci. 106, 94 (1996).
    [CrossRef]
  30. P. T. Lansberg, Recombination in Semiconductors (Cambridge University Press, Cambridge, 1991).
  31. J. R. Haynes and N. G. Nilsson, “The direct radiative transitions in germanium and their use in the analysis of lifetime,” in Proceedings of VIIth International Conference on Physics of Semiconductors, Paris 1964 (Paris: Dunod, 1964), p. 21.
  32. R. Conradt and J. Aengenheister, “Minority carrier lifetime in highly doped Ge,” Solid. State. Commun. 10, 321–323 (1972).
    [CrossRef]
  33. S. Marchetti, M. Martinelli, R. Simili, M. Giorgi, and M. Fantoni, “Measurement of Ge electrical parameters by analyzing its optical dynamics,” Phys. Script. 64, 509–511 (2001).
    [CrossRef]

2007 (2)

C. L. Schow, S. J. Koester, L. Schares, G. Dehlinger, and R. A. John, “High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs,” Proc SPIE 6477, 647705-1 (2007).

D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, and J. Michel, , “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007).
[CrossRef] [PubMed]

2006 (4)

M. Morse, O. I. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE. Photon. Technol. Lett. 18, 2442–2444 (2006).
[CrossRef]

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

A.W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[CrossRef] [PubMed]

M. J. Chen, C. S. Tsai, and M. K. Wu, “Optical gain and co-stimulated emissions of photons and phonons in indirect bandgap semiconductors,” Jpn. J. Appl. Phys. 45, 6576–6588 (2006).
[CrossRef]

2005 (3)

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

2003 (2)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
[CrossRef]

2001 (1)

S. Marchetti, M. Martinelli, R. Simili, M. Giorgi, and M. Fantoni, “Measurement of Ge electrical parameters by analyzing its optical dynamics,” Phys. Script. 64, 509–511 (2001).
[CrossRef]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

1998 (1)

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

1997 (1)

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,”  79, 1937–1940 (1997).

1996 (1)

L. Di Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, and F. Evangelisti, “Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation,” Appl. Surf. Sci. 106, 94 (1996).
[CrossRef]

1994 (2)

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[CrossRef]

A. J. Kenyon, P F Trwoga, M Federighi, and C W Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys.: Condens. Matter 6, L319–L324 (1994).
[CrossRef]

1992 (1)

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
[CrossRef]

1991 (1)

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).
[CrossRef]

1972 (2)

R. Conradt and J. Aengenheister, “Minority carrier lifetime in highly doped Ge,” Solid. State. Commun. 10, 321–323 (1972).
[CrossRef]

F. Lukeš and J. Humliček, “Electroreflectance of heavily doped n-type and p-type germanium near the direct gap,” Phys. Rev. B 6, 521–533 (1972).
[CrossRef]

1966 (1)

V. V. Zhdanova and T. A. Kontorova, “Thermal expansion of doped Ge,” Sov. Phys. Solid. State. 7, 2685–2689 (1966).

1962 (2)

M. V. Hobalen, “Direct optical transitions from the split-off valence band to the conduction band in germanium,” J. Phys. Chem. Solids 23, 821–822 (1962).
[CrossRef]

C. Haas, “Infrared absorption in heavily doped n-type germanium,” Phys. Rev. 125, 1965–1971 (1962).
[CrossRef]

1961 (2)

H. S. Sommers, “Degenerate germanium. II. Bandgap and carrier recombination,” Phys. Rev. 124, 1101–1110 (1961).
[CrossRef]

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-type germanium,” J. Appl. Phys. 32, 1822–1830 (1961).
[CrossRef]

1957 (1)

R. Newman and W. W. Tyler, “Effect of impurities on free-hole infrared absorption in p-type germanium,”. Phys. Rev. 105, 885–886 (1957).
[CrossRef]

Aengenheister, J.

R. Conradt and J. Aengenheister, “Minority carrier lifetime in highly doped Ge,” Solid. State. Commun. 10, 321–323 (1972).
[CrossRef]

Ahn, D.

Atwater, H. A.

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,”  79, 1937–1940 (1997).

Beals, M.

Benton, J. L.

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

Bowers, J. E.

Cannon, D. D.

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
[CrossRef]

Capellini, G.

L. Di Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, and F. Evangelisti, “Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation,” Appl. Surf. Sci. 106, 94 (1996).
[CrossRef]

Chen, M. J.

M. J. Chen, C. S. Tsai, and M. K. Wu, “Optical gain and co-stimulated emissions of photons and phonons in indirect bandgap semiconductors,” Jpn. J. Appl. Phys. 45, 6576–6588 (2006).
[CrossRef]

Cheng, W. Q.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

Chetrit, Y.

M. Morse, O. I. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE. Photon. Technol. Lett. 18, 2442–2444 (2006).
[CrossRef]

Chuang, S. L.

S. L. Chuang, Physics of optoelectronic devices, (Wiley, New York, 1995), Chapters 9–10.

Chudoba, C.

L. Di Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, and F. Evangelisti, “Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation,” Appl. Surf. Sci. 106, 94 (1996).
[CrossRef]

Cohen, O.

A.W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Conradt, R.

R. Conradt and J. Aengenheister, “Minority carrier lifetime in highly doped Ge,” Solid. State. Commun. 10, 321–323 (1972).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Danielson, D. T.

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Dehlinger, G.

C. L. Schow, S. J. Koester, L. Schares, G. Dehlinger, and R. A. John, “High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs,” Proc SPIE 6477, 647705-1 (2007).

Di Gaspare, L.

L. Di Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, and F. Evangelisti, “Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation,” Appl. Surf. Sci. 106, 94 (1996).
[CrossRef]

Dosunmu, O. I.

M. Morse, O. I. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE. Photon. Technol. Lett. 18, 2442–2444 (2006).
[CrossRef]

Eaglesham, D. J.

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

Evangelisti, F.

L. Di Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, and F. Evangelisti, “Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation,” Appl. Surf. Sci. 106, 94 (1996).
[CrossRef]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Fang, A.W.

Fantoni, M.

S. Marchetti, M. Martinelli, R. Simili, M. Giorgi, and M. Fantoni, “Measurement of Ge electrical parameters by analyzing its optical dynamics,” Phys. Script. 64, 509–511 (2001).
[CrossRef]

Federighi, M

A. J. Kenyon, P F Trwoga, M Federighi, and C W Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys.: Condens. Matter 6, L319–L324 (1994).
[CrossRef]

Fitzgerald, E. A.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Ge, Y.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Giorgi, M.

S. Marchetti, M. Martinelli, R. Simili, M. Giorgi, and M. Fantoni, “Measurement of Ge electrical parameters by analyzing its optical dynamics,” Phys. Script. 64, 509–511 (2001).
[CrossRef]

Giziewicz, W.

Groenert, M. E.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

Haas, C.

C. Haas, “Infrared absorption in heavily doped n-type germanium,” Phys. Rev. 125, 1965–1971 (1962).
[CrossRef]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Harris, J. S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Haynes, J. R.

J. R. Haynes and N. G. Nilsson, “The direct radiative transitions in germanium and their use in the analysis of lifetime,” in Proceedings of VIIth International Conference on Physics of Semiconductors, Paris 1964 (Paris: Dunod, 1964), p. 21.

He, G.

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,”  79, 1937–1940 (1997).

Hobalen, M. V.

M. V. Hobalen, “Direct optical transitions from the split-off valence band to the conduction band in germanium,” J. Phys. Chem. Solids 23, 821–822 (1962).
[CrossRef]

Hong, C. Y.

Huang, Q.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

Humlicek, J.

F. Lukeš and J. Humliček, “Electroreflectance of heavily doped n-type and p-type germanium near the direct gap,” Phys. Rev. B 6, 521–533 (1972).
[CrossRef]

Ishikawa, Y.

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
[CrossRef]

Jacobson, D. C.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[CrossRef]

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

John, R. A.

C. L. Schow, S. J. Koester, L. Schares, G. Dehlinger, and R. A. John, “High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs,” Proc SPIE 6477, 647705-1 (2007).

Jones, R.

A.W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Jongthammanurak, S.

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Jongthanmmanurak, S.

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

Kamins, T. I.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Kenyon, A. J.

A. J. Kenyon, P F Trwoga, M Federighi, and C W Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys.: Condens. Matter 6, L319–L324 (1994).
[CrossRef]

Kimeriling, L. C.

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

Kimerling, L. C.

D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, and J. Michel, , “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007).
[CrossRef] [PubMed]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
[CrossRef]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[CrossRef]

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

Kimerling, Lionel C.

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Koester, S. J.

C. L. Schow, S. J. Koester, L. Schares, G. Dehlinger, and R. A. John, “High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs,” Proc SPIE 6477, 647705-1 (2007).

Kontorova, T. A.

V. V. Zhdanova and T. A. Kontorova, “Thermal expansion of doped Ge,” Sov. Phys. Solid. State. 7, 2685–2689 (1966).

Koshida, N.

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
[CrossRef]

Koyama, H.

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
[CrossRef]

Kuo, Y.-H.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Lansberg, P. T.

P. T. Lansberg, Recombination in Semiconductors (Cambridge University Press, Cambridge, 1991).

Lee, H.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

Lee, Y. K.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Leitz, C. W.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Liu, J. F.

D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, and J. Michel, , “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007).
[CrossRef] [PubMed]

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
[CrossRef]

Logan, R. A.

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-type germanium,” J. Appl. Phys. 32, 1822–1830 (1961).
[CrossRef]

Luan, H. C.

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
[CrossRef]

Lukeš, F.

F. Lukeš and J. Humliček, “Electroreflectance of heavily doped n-type and p-type germanium near the direct gap,” Phys. Rev. B 6, 521–533 (1972).
[CrossRef]

Marchetti, S.

S. Marchetti, M. Martinelli, R. Simili, M. Giorgi, and M. Fantoni, “Measurement of Ge electrical parameters by analyzing its optical dynamics,” Phys. Script. 64, 509–511 (2001).
[CrossRef]

Martinelli, M.

S. Marchetti, M. Martinelli, R. Simili, M. Giorgi, and M. Fantoni, “Measurement of Ge electrical parameters by analyzing its optical dynamics,” Phys. Script. 64, 509–511 (2001).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Michel, J.

D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, and J. Michel, , “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007).
[CrossRef] [PubMed]

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[CrossRef]

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

Miller, D. A. B.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Morse, M.

M. Morse, O. I. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE. Photon. Technol. Lett. 18, 2442–2444 (2006).
[CrossRef]

Newman, R.

R. Newman and W. W. Tyler, “Effect of impurities on free-hole infrared absorption in p-type germanium,”. Phys. Rev. 105, 885–886 (1957).
[CrossRef]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Nilsson, N. G.

J. R. Haynes and N. G. Nilsson, “The direct radiative transitions in germanium and their use in the analysis of lifetime,” in Proceedings of VIIth International Conference on Physics of Semiconductors, Paris 1964 (Paris: Dunod, 1964), p. 21.

Pan, D.

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Peng, C. S.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

Pitera, A. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

Pitt, C W

A. J. Kenyon, P F Trwoga, M Federighi, and C W Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys.: Condens. Matter 6, L319–L324 (1994).
[CrossRef]

Poate, J. M.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[CrossRef]

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

Polman, A.

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Ram, R. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

Ren, F. Y. G.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[CrossRef]

Ren, S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Roth, J. E.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Sarid, G.

M. Morse, O. I. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE. Photon. Technol. Lett. 18, 2442–2444 (2006).
[CrossRef]

Schares, L.

C. L. Schow, S. J. Koester, L. Schares, G. Dehlinger, and R. A. John, “High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs,” Proc SPIE 6477, 647705-1 (2007).

Schow, C. L.

C. L. Schow, S. J. Koester, L. Schares, G. Dehlinger, and R. A. John, “High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs,” Proc SPIE 6477, 647705-1 (2007).

Sebastiani, M.

L. Di Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, and F. Evangelisti, “Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation,” Appl. Surf. Sci. 106, 94 (1996).
[CrossRef]

Sheng, T. T.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

Simili, R.

S. Marchetti, M. Martinelli, R. Simili, M. Giorgi, and M. Fantoni, “Measurement of Ge electrical parameters by analyzing its optical dynamics,” Phys. Script. 64, 509–511 (2001).
[CrossRef]

Sommers, H. S.

H. S. Sommers, “Degenerate germanium. II. Bandgap and carrier recombination,” Phys. Rev. 124, 1101–1110 (1961).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-type germanium,” J. Appl. Phys. 32, 1822–1830 (1961).
[CrossRef]

Trumbore, F. A.

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-type germanium,” J. Appl. Phys. 32, 1822–1830 (1961).
[CrossRef]

Trwoga, P F

A. J. Kenyon, P F Trwoga, M Federighi, and C W Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys.: Condens. Matter 6, L319–L324 (1994).
[CrossRef]

Tsai, C. S.

M. J. Chen, C. S. Tsai, and M. K. Wu, “Optical gain and co-stimulated emissions of photons and phonons in indirect bandgap semiconductors,” Jpn. J. Appl. Phys. 45, 6576–6588 (2006).
[CrossRef]

Tung, C. H.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

Tyler, W. W.

R. Newman and W. W. Tyler, “Effect of impurities on free-hole infrared absorption in p-type germanium,”. Phys. Rev. 105, 885–886 (1957).
[CrossRef]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).
[CrossRef]

Wada, K.

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
[CrossRef]

Wu, M. K.

M. J. Chen, C. S. Tsai, and M. K. Wu, “Optical gain and co-stimulated emissions of photons and phonons in indirect bandgap semiconductors,” Jpn. J. Appl. Phys. 45, 6576–6588 (2006).
[CrossRef]

Xie, Y.-H.

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

Yang, V.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

Zhang, Y. H.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

Zhdanova, V. V.

V. V. Zhdanova and T. A. Kontorova, “Thermal expansion of doped Ge,” Sov. Phys. Solid. State. 7, 2685–2689 (1966).

Zheng, B.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[CrossRef]

Zhou, J. M.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

Appl. Phys. Lett. (6)

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ=1.54µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[CrossRef]

D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.-H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett. 58, 2797 (1991).
[CrossRef]

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced direct bandgap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).
[CrossRef]

J. F. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and Lionel C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band optical communications”, Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

S. Jongthanmmanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimeriling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89, 161115 (2006).
[CrossRef]

Appl. Surf. Sci. (1)

L. Di Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, and F. Evangelisti, “Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation,” Appl. Surf. Sci. 106, 94 (1996).
[CrossRef]

IEEE. Photon. Technol. Lett. (1)

M. Morse, O. I. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE. Photon. Technol. Lett. 18, 2442–2444 (2006).
[CrossRef]

J. Appl. Phys. (2)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).
[CrossRef]

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-type germanium,” J. Appl. Phys. 32, 1822–1830 (1961).
[CrossRef]

J. Phys. Chem. Solids (1)

M. V. Hobalen, “Direct optical transitions from the split-off valence band to the conduction band in germanium,” J. Phys. Chem. Solids 23, 821–822 (1962).
[CrossRef]

J. Phys.: Condens. Matter (1)

A. J. Kenyon, P F Trwoga, M Federighi, and C W Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys.: Condens. Matter 6, L319–L324 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. J. Chen, C. S. Tsai, and M. K. Wu, “Optical gain and co-stimulated emissions of photons and phonons in indirect bandgap semiconductors,” Jpn. J. Appl. Phys. 45, 6576–6588 (2006).
[CrossRef]

Nature (3)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. (3)

R. Newman and W. W. Tyler, “Effect of impurities on free-hole infrared absorption in p-type germanium,”. Phys. Rev. 105, 885–886 (1957).
[CrossRef]

C. Haas, “Infrared absorption in heavily doped n-type germanium,” Phys. Rev. 125, 1965–1971 (1962).
[CrossRef]

H. S. Sommers, “Degenerate germanium. II. Bandgap and carrier recombination,” Phys. Rev. 124, 1101–1110 (1961).
[CrossRef]

Phys. Rev. B (3)

F. Lukeš and J. Humliček, “Electroreflectance of heavily doped n-type and p-type germanium near the direct gap,” Phys. Rev. B 6, 521–533 (1972).
[CrossRef]

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Phys. Rev. B 57, 8805–8808 (1998).
[CrossRef]

C. G. Van de Walle, “Band lineups and deformation potentials in model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).
[CrossRef]

Phys. Script. (1)

S. Marchetti, M. Martinelli, R. Simili, M. Giorgi, and M. Fantoni, “Measurement of Ge electrical parameters by analyzing its optical dynamics,” Phys. Script. 64, 509–511 (2001).
[CrossRef]

Proc SPIE (1)

C. L. Schow, S. J. Koester, L. Schares, G. Dehlinger, and R. A. John, “High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs,” Proc SPIE 6477, 647705-1 (2007).

Solid. State. Commun. (1)

R. Conradt and J. Aengenheister, “Minority carrier lifetime in highly doped Ge,” Solid. State. Commun. 10, 321–323 (1972).
[CrossRef]

Sov. Phys. Solid. State. (1)

V. V. Zhdanova and T. A. Kontorova, “Thermal expansion of doped Ge,” Sov. Phys. Solid. State. 7, 2685–2689 (1966).

Other (5)

S. L. Chuang, Physics of optoelectronic devices, (Wiley, New York, 1995), Chapters 9–10.

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,”  79, 1937–1940 (1997).

P. T. Lansberg, Recombination in Semiconductors (Cambridge University Press, Cambridge, 1991).

J. R. Haynes and N. G. Nilsson, “The direct radiative transitions in germanium and their use in the analysis of lifetime,” in Proceedings of VIIth International Conference on Physics of Semiconductors, Paris 1964 (Paris: Dunod, 1964), p. 21.

O. Madelung, Physics of Group IV Elements and III–V Compounds, edited by Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology (Springer, Berlin, 1982), vol. 17a.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Schematic band structure of bulk Ge, showing a 136 meV difference between the direct gap and the indirect gap, (b) the difference between the direct and the indirect gaps can be decreased by tensile strain, and (c) the rest of the difference between direct and indirect gaps in tensile strained Ge can be compensated by filling electrons into the L valleys.

Fig. 2.
Fig. 2.

(a) Band-to-band absorption measurement of the direct transition in unstrained [22] and tensile strained Ge (this work); (b) gain spectra from the direct transition in 0.25% tensile-strained n+ Ge with N=7.6×1019 cm-3 at different injected carrier densities; and gain from the direct transition, free carrier loss and net gain as a function of injected carrier density in (c) 0.25% tensile strained n+ Ge, and (d) n+ bulk Ge

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ Γ ( h ν ) = α Γ ( h ν ) ( f c f ν ) ,
α Γ ( h ν ) = A ( h ν E g Γ ) h ν ,
α Γ ( h ν ) = A ( h ν E g Γ ( lh ) + h ν E g Γ ( hh ) ) h ν ,
α f ( λ ) = AN λ a + BP λ b ,
α f ( λ ) = 3.4 × 10 25 N λ 2.25 3.2 × 10 25 P λ 2.43 ,

Metrics