Abstract

As the first demonstration of Faraday effect in a TGG ceramics, its Verdet constant at 1053 nm is evaluated to be 36.4 rad/Tm at room temperature which is same as that of the single crystal. In addition, the temperature dependence of Verdet constant is obtained experimentally. At liquid helium temperature, it is 87 times greater than that at room temperature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, "Residual elastic strain due to laser shock peening," J. Strain Anal. 41, 113-120 (2006).
    [CrossRef]
  2. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer and E. E. B. Campbell, "Laser processing of sapphire with picosecond and sub-picosecond pulses," Appl. Surf. Sci. 120, 65-80 (1997).
    [CrossRef]
  3. K. Nawata, Y. Ojima, M. Okida, T. Ogawa, and T. Omatsu, "Power scaling of a pico-second Nd:YVO4 master-oscillator power amplifier with a phase-conjugate mirror," Opt. Express 14, 10657-10662 (2006).
    [CrossRef] [PubMed]
  4. M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor, K. Krushelnick, M. Tatarakis, I. Watts, K. W. D. Ledingham, T. McCanny, I. Spencer, A. C. Machacek, R. Allott, R. J. Clarke and P. A. Norreys, "Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions," Appl. Phys. Lett. 78, 19-21 (2001).
    [CrossRef]
  5. J. D. Kmetec, C. L. Gordon, III, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, "MeV x-ray generation with a femtosecond laser," Phys. Rev. Lett. 68, 1527-1530 (1992).
    [CrossRef] [PubMed]
  6. N. Miyanaga, H. Azechi, K.A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa and K. Mima, "10-kJ PW laser for the FIREX-I program," in Inertial Fusion Sciences and Applications 2005, J.-C. Gauthier, et al., ed., (EDP sciences, Les Ulis cedex A, France, 2006), pp. 81-87.
  7. W. F. Krupke, "Solid State Laser Driver for an ICF Reactor," Fusion Technol. 15, 377-382 (1989).
  8. T. Kawashima, T. Kanabe, H. Matsui, E. Eguchi, M. Yamanaka, Y. Kato, M. Nakatsuka, Y. Izawa, S. Nakai, T. Kanzaki and H. Kan,"Design and Performance of a Diode-Pumped Nd:Silica-Phosphate Glass Zig-Zag Slab Laser Amplifier for Inertial Fusion Energy," Jpn. J. Appl. Phys. 40, 6415-6425 (2001).
    [CrossRef]
  9. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor," Appl. Opt. 40, 366-374 (2001).
    [CrossRef]
  10. H. Seito, M. Kawase and M. Saito, "Temperature dependence of the Faraday effect in As-S glass fiber," Appl. Opt. 24, 2300-2302 (1985).
    [CrossRef] [PubMed]
  11. J. Ballato and E. Snitzer, "Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications," Appl. Opt. 34, 6848-6854 (1995).
    [CrossRef] [PubMed]
  12. T. Shintaku and T. Uno, "Optical waveguide isolator based on nonreciprocal radiation," J. Appl. Phys. 76, 8155- 8159 (1994).
    [CrossRef]
  13. V. I. Chani, A. Yoshikawa, H. Machida, T. Satoh and T. Fukuda, "Growth of Tb3 Ga5 O12 fiber and bulk crystals using micro-pulling-down apparatus," J. Cryst. Growth 210, 663-669 (2000).
    [CrossRef]
  14. J. A. Davis and R. M. Bunch, "Temperature dependence of the Faraday rotation of Hoya FR-5 glass," Appl. Opt. 23, 633-636 (1984).
    [CrossRef] [PubMed]
  15. M. Y. A. Raja, D. Allen, and W. Sisk, "Room-temperature inverse Faraday effect in terbium gallium garnet," Appl. Phys. Lett. 67, 2123-2125 (1995).
    [CrossRef]
  16. Northrop Grumman, TGG data sheet. (2006). http://www.st.northropgrumman.com/synoptics/products/specialty/TGG.html>
  17. A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, "SRS risk potential in Faraday rotator Tb3Ga5O12 Crystals for high-peak power lasers," Laser Phys. Lett. 2, 489-492 (2005).
    [CrossRef]
  18. R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, "A compact tunable 60-dB Faraday optical isolator for the near infrared," Rev. Sci. Instrum. 63, 5586-5590 (1992).
    [CrossRef]
  19. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, "Compensation of thermally induced modal distortions in Faraday isolators," IEEE J. Quantum Electron. 40, 1500-1510 (2004).
    [CrossRef]
  20. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, D. B. Tanner, "Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers," Class. Quantum Grav. 19, 1793-1801 (2002).
    [CrossRef]
  21. X. Chen, R. Galemezuk, B. Salce, B. Lavorel, C. Akir, and L. Rajaonah, "Long-transient conoscopic pattern technique," Solid State Commun. 110, 431-434 (1999).
    [CrossRef]
  22. G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rareearth ions," Phys. Rev. B 4, 592-609 (1971).
    [CrossRef]
  23. E. A. Khazanov, "Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers," Proc. SPIE 4968, 115-126, (2003).
    [CrossRef]
  24. M. A. Kagan and E. A. Khazanov, "Thermally Induced Birefringence in Faraday Devices Made from Terbium Gallium Garnet-Polycrystalline Ceramics," Appl. Opt. 43, 6030-6039 (2004).
    [CrossRef] [PubMed]
  25. T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese Patent, 10-101333 (1998).
  26. T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese Patent, 10-101411 (1998).
  27. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, "110 W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B 79, 25-28 (2004).
    [CrossRef]
  28. J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda and Y. Izawa, "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys. 15, 1306-1312 (2005).
  29. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, "23.7-W picosecond cryogenic-Yb:YAG multipass amplifier," Opt. Express 15, 3955-3961 (2007).
    [CrossRef] [PubMed]
  30. J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, "Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system," Appl. Opt. 40, 3542-3546 (2001).
    [CrossRef]
  31. J. Kawanaka, K. Yamakawa, H Nishioka, and K. Ueda, "30mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier," Opt. Lett. 28, 2121-2123 (2003).
    [CrossRef] [PubMed]
  32. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004).
    [CrossRef] [PubMed]
  33. N. P. Barnes and L. B. Petway, "Variation of the Verdet constant with temperature of terbium gallium garnet," J. Opt. Soc. Am. B 9, 1912-1915 (1992).
    [CrossRef]
  34. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
    [CrossRef]
  35. J. H. Van Vleck and M. H. Hebb, "On the paramagnetic rotation of Tysonite," Phys. Rev. 46, 17 - 32 (1934).
    [CrossRef]
  36. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).
  37. E. Hecht, Optics (Addison Wesley, San Francisco, 2002) 4th ed., Chap. 8, p. 333.

2007 (1)

2006 (3)

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

K. Nawata, Y. Ojima, M. Okida, T. Ogawa, and T. Omatsu, "Power scaling of a pico-second Nd:YVO4 master-oscillator power amplifier with a phase-conjugate mirror," Opt. Express 14, 10657-10662 (2006).
[CrossRef] [PubMed]

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, "Residual elastic strain due to laser shock peening," J. Strain Anal. 41, 113-120 (2006).
[CrossRef]

2005 (2)

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda and Y. Izawa, "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys. 15, 1306-1312 (2005).

A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, "SRS risk potential in Faraday rotator Tb3Ga5O12 Crystals for high-peak power lasers," Laser Phys. Lett. 2, 489-492 (2005).
[CrossRef]

2004 (4)

M. A. Kagan and E. A. Khazanov, "Thermally Induced Birefringence in Faraday Devices Made from Terbium Gallium Garnet-Polycrystalline Ceramics," Appl. Opt. 43, 6030-6039 (2004).
[CrossRef] [PubMed]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, "110 W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B 79, 25-28 (2004).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004).
[CrossRef] [PubMed]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, "Compensation of thermally induced modal distortions in Faraday isolators," IEEE J. Quantum Electron. 40, 1500-1510 (2004).
[CrossRef]

2003 (2)

J. Kawanaka, K. Yamakawa, H Nishioka, and K. Ueda, "30mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier," Opt. Lett. 28, 2121-2123 (2003).
[CrossRef] [PubMed]

E. A. Khazanov, "Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers," Proc. SPIE 4968, 115-126, (2003).
[CrossRef]

2002 (1)

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, D. B. Tanner, "Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers," Class. Quantum Grav. 19, 1793-1801 (2002).
[CrossRef]

2001 (4)

T. Kawashima, T. Kanabe, H. Matsui, E. Eguchi, M. Yamanaka, Y. Kato, M. Nakatsuka, Y. Izawa, S. Nakai, T. Kanzaki and H. Kan,"Design and Performance of a Diode-Pumped Nd:Silica-Phosphate Glass Zig-Zag Slab Laser Amplifier for Inertial Fusion Energy," Jpn. J. Appl. Phys. 40, 6415-6425 (2001).
[CrossRef]

J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor," Appl. Opt. 40, 366-374 (2001).
[CrossRef]

M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor, K. Krushelnick, M. Tatarakis, I. Watts, K. W. D. Ledingham, T. McCanny, I. Spencer, A. C. Machacek, R. Allott, R. J. Clarke and P. A. Norreys, "Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions," Appl. Phys. Lett. 78, 19-21 (2001).
[CrossRef]

J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, "Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system," Appl. Opt. 40, 3542-3546 (2001).
[CrossRef]

2000 (1)

V. I. Chani, A. Yoshikawa, H. Machida, T. Satoh and T. Fukuda, "Growth of Tb3 Ga5 O12 fiber and bulk crystals using micro-pulling-down apparatus," J. Cryst. Growth 210, 663-669 (2000).
[CrossRef]

1999 (1)

X. Chen, R. Galemezuk, B. Salce, B. Lavorel, C. Akir, and L. Rajaonah, "Long-transient conoscopic pattern technique," Solid State Commun. 110, 431-434 (1999).
[CrossRef]

1997 (1)

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer and E. E. B. Campbell, "Laser processing of sapphire with picosecond and sub-picosecond pulses," Appl. Surf. Sci. 120, 65-80 (1997).
[CrossRef]

1995 (2)

J. Ballato and E. Snitzer, "Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications," Appl. Opt. 34, 6848-6854 (1995).
[CrossRef] [PubMed]

M. Y. A. Raja, D. Allen, and W. Sisk, "Room-temperature inverse Faraday effect in terbium gallium garnet," Appl. Phys. Lett. 67, 2123-2125 (1995).
[CrossRef]

1994 (1)

T. Shintaku and T. Uno, "Optical waveguide isolator based on nonreciprocal radiation," J. Appl. Phys. 76, 8155- 8159 (1994).
[CrossRef]

1992 (3)

J. D. Kmetec, C. L. Gordon, III, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, "MeV x-ray generation with a femtosecond laser," Phys. Rev. Lett. 68, 1527-1530 (1992).
[CrossRef] [PubMed]

R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, "A compact tunable 60-dB Faraday optical isolator for the near infrared," Rev. Sci. Instrum. 63, 5586-5590 (1992).
[CrossRef]

N. P. Barnes and L. B. Petway, "Variation of the Verdet constant with temperature of terbium gallium garnet," J. Opt. Soc. Am. B 9, 1912-1915 (1992).
[CrossRef]

1989 (1)

W. F. Krupke, "Solid State Laser Driver for an ICF Reactor," Fusion Technol. 15, 377-382 (1989).

1985 (1)

1984 (1)

1971 (1)

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rareearth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

1934 (1)

J. H. Van Vleck and M. H. Hebb, "On the paramagnetic rotation of Tysonite," Phys. Rev. 46, 17 - 32 (1934).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, "110 W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B 79, 25-28 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

M. Y. A. Raja, D. Allen, and W. Sisk, "Room-temperature inverse Faraday effect in terbium gallium garnet," Appl. Phys. Lett. 67, 2123-2125 (1995).
[CrossRef]

M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor, K. Krushelnick, M. Tatarakis, I. Watts, K. W. D. Ledingham, T. McCanny, I. Spencer, A. C. Machacek, R. Allott, R. J. Clarke and P. A. Norreys, "Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions," Appl. Phys. Lett. 78, 19-21 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer and E. E. B. Campbell, "Laser processing of sapphire with picosecond and sub-picosecond pulses," Appl. Surf. Sci. 120, 65-80 (1997).
[CrossRef]

Class. Quantum Grav. (1)

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, D. B. Tanner, "Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers," Class. Quantum Grav. 19, 1793-1801 (2002).
[CrossRef]

Fusion Technol. (1)

W. F. Krupke, "Solid State Laser Driver for an ICF Reactor," Fusion Technol. 15, 377-382 (1989).

IEEE J. Quantum Electron. (1)

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, "Compensation of thermally induced modal distortions in Faraday isolators," IEEE J. Quantum Electron. 40, 1500-1510 (2004).
[CrossRef]

J. Appl. Phys. (1)

T. Shintaku and T. Uno, "Optical waveguide isolator based on nonreciprocal radiation," J. Appl. Phys. 76, 8155- 8159 (1994).
[CrossRef]

J. Cryst. Growth (1)

V. I. Chani, A. Yoshikawa, H. Machida, T. Satoh and T. Fukuda, "Growth of Tb3 Ga5 O12 fiber and bulk crystals using micro-pulling-down apparatus," J. Cryst. Growth 210, 663-669 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Strain Anal. (1)

A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, "Residual elastic strain due to laser shock peening," J. Strain Anal. 41, 113-120 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Kawashima, T. Kanabe, H. Matsui, E. Eguchi, M. Yamanaka, Y. Kato, M. Nakatsuka, Y. Izawa, S. Nakai, T. Kanzaki and H. Kan,"Design and Performance of a Diode-Pumped Nd:Silica-Phosphate Glass Zig-Zag Slab Laser Amplifier for Inertial Fusion Energy," Jpn. J. Appl. Phys. 40, 6415-6425 (2001).
[CrossRef]

Laser Phys. (1)

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda and Y. Izawa, "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys. 15, 1306-1312 (2005).

Laser Phys. Lett. (1)

A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, "SRS risk potential in Faraday rotator Tb3Ga5O12 Crystals for high-peak power lasers," Laser Phys. Lett. 2, 489-492 (2005).
[CrossRef]

Opt. Express (2)

K. Nawata, Y. Ojima, M. Okida, T. Ogawa, and T. Omatsu, "Power scaling of a pico-second Nd:YVO4 master-oscillator power amplifier with a phase-conjugate mirror," Opt. Express 14, 10657-10662 (2006).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, "23.7-W picosecond cryogenic-Yb:YAG multipass amplifier," Opt. Express 15, 3955-3961 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

J. H. Van Vleck and M. H. Hebb, "On the paramagnetic rotation of Tysonite," Phys. Rev. 46, 17 - 32 (1934).
[CrossRef]

Phys. Rev. B (1)

G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rareearth ions," Phys. Rev. B 4, 592-609 (1971).
[CrossRef]

Phys. Rev. Lett. (1)

J. D. Kmetec, C. L. Gordon, III, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, "MeV x-ray generation with a femtosecond laser," Phys. Rev. Lett. 68, 1527-1530 (1992).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. A. Khazanov, "Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers," Proc. SPIE 4968, 115-126, (2003).
[CrossRef]

Quantum Electron. (1)

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, "A compact tunable 60-dB Faraday optical isolator for the near infrared," Rev. Sci. Instrum. 63, 5586-5590 (1992).
[CrossRef]

Solid State Commun. (1)

X. Chen, R. Galemezuk, B. Salce, B. Lavorel, C. Akir, and L. Rajaonah, "Long-transient conoscopic pattern technique," Solid State Commun. 110, 431-434 (1999).
[CrossRef]

Other (6)

T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese Patent, 10-101333 (1998).

T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese Patent, 10-101411 (1998).

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).

E. Hecht, Optics (Addison Wesley, San Francisco, 2002) 4th ed., Chap. 8, p. 333.

Northrop Grumman, TGG data sheet. (2006). http://www.st.northropgrumman.com/synoptics/products/specialty/TGG.html>

N. Miyanaga, H. Azechi, K.A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa and K. Mima, "10-kJ PW laser for the FIREX-I program," in Inertial Fusion Sciences and Applications 2005, J.-C. Gauthier, et al., ed., (EDP sciences, Les Ulis cedex A, France, 2006), pp. 81-87.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

A schematic diagram of experimental setup for the measurement.

Fig. 2.
Fig. 2.

Curve fitting of light intensity (I/I 0)and rotation angle for TGG ceramics at 300K.

Fig. 3.
Fig. 3.

The temperature dependence of Verdet constant of TGG single crystal and TGG ceramics.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

θ = V H L ,
V = A χ + B .
M = Ng μ B J B J ( x ) .
x = g μ B H J k T .
χ = M H = N J ( J + 1 ) g 2 μ B 2 3 k T .
V = A N J ( J + 1 ) g 2 μ B 2 3 k T + B .
R = D G D TGG ,
V = 1.29 × 10 22 ARJ ( J + 1 ) g 2 μ B 2 3 k T + B .
I = I 0 cos 2 ( θ + θ ' ) + I min ,
A N J ( J + 1 ) g 2 μ B 2 3 k = 13290 ± 171.4 radK Tm

Metrics