Abstract

Here we report polarization-sensitive, thermal radiation measurements of individual, antenna-like, thin film Platinum nanoheaters. These heaters confine the lateral extent of the heated area to dimensions smaller (or comparable) to the thermal emission wavelengths. For very narrow heater structures the polarization of the thermal radiation shows a very high extinction ratio as well as a dipolar-like angular radiation pattern. A simple analysis of the radiation intensities suggests a significant enhancement of the thermal radiation for these very narrow heater structures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, M. M. S. K. M. Ho, W. Zubzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  2. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
    [CrossRef] [PubMed]
  3. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, "Thermal Radiation from Photonic Crystals: A Direct Calculation," Phys. Rev. Lett. 93, 213905 (2004).
    [CrossRef] [PubMed]
  4. A. Narayanaswamy and G. Chen, "Thermal emission control with one-dimensional metallodielectric photonic crystals," Phys. Rev. B 70, 125101 (2004).
    [CrossRef]
  5. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
    [CrossRef]
  6. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
    [CrossRef] [PubMed]
  7. I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission" Phys. Rev. B 72, 075127 (2005).
    [CrossRef]
  8. B. J. Lee, C. J. Fu, and Z.M. Zhang, "Coherent thermal emission from one-dimensional photonic crystals," Appl. Phys. Lett. 87, 071904-071906 (2005).
    [CrossRef]
  9. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-744 (2006).
    [CrossRef] [PubMed]
  10. S. J. Chey, H. F. Hamann, M. P. O’Boyle, H. K. Wickramasinghe, US Patent Publication US, 0190175A1 (2004).
  11. Quantum Focus Instruments, InfraScope III. The 4.1 um built in filter is included to enhance the spatial resolution of thermal images. The quoted sensitivity of the microscope is 0.1º C at 80º C.
  12. G. Eppeldauer and M. Racz, "Spectral Power and Irradiance Responsivity Calibration of InSb Working- Standard Radiometers," Appl. Opt. 39, 5739-5744 (2000).
    [CrossRef]
  13. Nanonics, Pt/Au co-axial thermocouple tips.
  14. H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, H. K. Wickramasinghe, "Ultra-high-density phase- change storage and memory," Nat. Mater. 5, 383-387 (2006).
    [CrossRef] [PubMed]
  15. Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties, (IFI/Plenum, 1970) Vol 7.
  16. D. J. Price, "A Theory of Reflectivity and Emissivity," Proc. Phys. Soc. London, Sect. A 62, 278-283 (1949).
    [CrossRef]
  17. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarski, Principles of Statistical Radiophysics (Springer, Berlin, 1987).

2006

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-744 (2006).
[CrossRef] [PubMed]

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, H. K. Wickramasinghe, "Ultra-high-density phase- change storage and memory," Nat. Mater. 5, 383-387 (2006).
[CrossRef] [PubMed]

2005

I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission" Phys. Rev. B 72, 075127 (2005).
[CrossRef]

B. J. Lee, C. J. Fu, and Z.M. Zhang, "Coherent thermal emission from one-dimensional photonic crystals," Appl. Phys. Lett. 87, 071904-071906 (2005).
[CrossRef]

2004

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, "Thermal Radiation from Photonic Crystals: A Direct Calculation," Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef] [PubMed]

A. Narayanaswamy and G. Chen, "Thermal emission control with one-dimensional metallodielectric photonic crystals," Phys. Rev. B 70, 125101 (2004).
[CrossRef]

2002

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

2000

1998

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, M. M. S. K. M. Ho, W. Zubzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

1949

D. J. Price, "A Theory of Reflectivity and Emissivity," Proc. Phys. Soc. London, Sect. A 62, 278-283 (1949).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

B. J. Lee, C. J. Fu, and Z.M. Zhang, "Coherent thermal emission from one-dimensional photonic crystals," Appl. Phys. Lett. 87, 071904-071906 (2005).
[CrossRef]

Nat. Mater.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, H. K. Wickramasinghe, "Ultra-high-density phase- change storage and memory," Nat. Mater. 5, 383-387 (2006).
[CrossRef] [PubMed]

Nature

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen and J.-J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-744 (2006).
[CrossRef] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, M. M. S. K. M. Ho, W. Zubzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Phys. Rev. B

I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission" Phys. Rev. B 72, 075127 (2005).
[CrossRef]

A. Narayanaswamy and G. Chen, "Thermal emission control with one-dimensional metallodielectric photonic crystals," Phys. Rev. B 70, 125101 (2004).
[CrossRef]

Phys. Rev. Lett.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, "Thermal Radiation from Photonic Crystals: A Direct Calculation," Phys. Rev. Lett. 93, 213905 (2004).
[CrossRef] [PubMed]

Proc. Phys. Soc. London, Sect. A

D. J. Price, "A Theory of Reflectivity and Emissivity," Proc. Phys. Soc. London, Sect. A 62, 278-283 (1949).
[CrossRef]

Other

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarski, Principles of Statistical Radiophysics (Springer, Berlin, 1987).

Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties, (IFI/Plenum, 1970) Vol 7.

Nanonics, Pt/Au co-axial thermocouple tips.

S. J. Chey, H. F. Hamann, M. P. O’Boyle, H. K. Wickramasinghe, US Patent Publication US, 0190175A1 (2004).

Quantum Focus Instruments, InfraScope III. The 4.1 um built in filter is included to enhance the spatial resolution of thermal images. The quoted sensitivity of the microscope is 0.1º C at 80º C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. The sample is shown as a SEM image where we overlaid a calculated temperature field (see text for details).

Fig. 2.
Fig. 2.

The thermal radiation signal as a function of the angle of the polarizer exhibits a dipolelike behavior. If the heater is rotated by 90 degrees the polarization pattern is shifted accordingly. The inserts show scanning thermal microscope images of a nanoheater (see text for more details).

Fig. 3.
Fig. 3.

Extinction ratio (A), total (B) and unpolarized (C) radiation efficiency for a 6 µm long nanoheater as a function of heater width. The data shows a significant enhancement of the thermal light emission and corresponding high extinction ratios from narrow antenna-like nanoheaters (see text for more details).

Fig. 4.
Fig. 4.

Angular thermal radiation patterns for two nanoheaters with different width. The axis of rotation lies in the plane of the substrate and perpendicular to the long axis of the heater.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R total = 0 2 π I ( θ ) d θ A T 3.34
R unpol = 2 π I u A T 3.34

Metrics