Abstract

Antisqueezed light is a possible resource to apply quantum information technologies to the real world. When antisqueezed light is used in secure optical communications, an LD is a preferable light source from an engineering point of view. Although LD output power is low, LD light can be antisqueezed with the help of an EDFA in a reflection-type interferometer consisting of a standard single-mode fiber of typically 5 km. The ellipticity of the obtained antisqueezed light was 9 at maximum in a balanced interferometer case, and the angle that was subtended by antisqueezed fluctuations at the origin of phase space was 23° at maximum. The feasibility of secure optical communications using antisqueezed light is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (India, 1984), pp. 175-179.
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum states via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
    [CrossRef] [PubMed]
  3. P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," SIAM J. Comput. 26, 1484-1509 (1997).
    [CrossRef]
  4. L. K. Grover, "Quantum mechanics helps in searching for a needle in a haystack," Phys. Rev. Lett. 79, 325-328 (1997).
    [CrossRef]
  5. T. Tomaru and M. Ban, "Secure optical communication using antisqueezing," Phys. Rev. A 74, 032312 (2006).
    [CrossRef]
  6. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, "Secure communication using mesoscopic coherent states," Phys. Rev. Lett. 90, 227901 (2003).
    [CrossRef] [PubMed]
  7. M. Shirasaki and H. A. Haus, "Squeezing of pulses in a nonlinear interferometer," J. Opt. Soc. Am. B 7, 30-34 (1990).
    [CrossRef]
  8. M. J. Werner, "Quantum soliton generation using an interferometer," Phys. Rev. Lett. 81, 4132-4135 (1998).
    [CrossRef]
  9. N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn, "Polarization squeezing and continuous-variable polarization entanglement," Phys. Rev. A 65, 052306 (2002).
    [CrossRef]
  10. C. R. Doerr, I. Lyubomirsky, G. Lenz, J. Paye, H. A. Haus, and M. Shirasaki, "Optical squeezing with a short fiber," in Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 1993) paper QFF3.
  11. T. Tomaru, "Femtosecond pulse squeezing limited by stimulated Raman process in optical fibers," Opt. Commun. 273, 263-271 (2007).
    [CrossRef]
  12. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweeter, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 - 3295 (1997).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995).
  14. H. A. Haus and C. X. Yu, "Soliton squeezing and the continuum," J. Opt. Soc. Am. B 17, 618-628 (2000).
    [CrossRef]
  15. K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, "Squeezing in a fiber interferometer with a gigahertz pump," Opt. Lett. 19, 290-292 (1994).
    [CrossRef] [PubMed]
  16. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, "Measurement of the Raman gain spectrum of optical fibers," Opt. Lett. 20, 31-33 (1995).
    [CrossRef] [PubMed]
  17. R. H. Stolen, "Nonlinearity in fiber transmission," Proc. IEEE 68, 1232-1235 (1980).
    [CrossRef]

2007 (1)

T. Tomaru, "Femtosecond pulse squeezing limited by stimulated Raman process in optical fibers," Opt. Commun. 273, 263-271 (2007).
[CrossRef]

2006 (1)

T. Tomaru and M. Ban, "Secure optical communication using antisqueezing," Phys. Rev. A 74, 032312 (2006).
[CrossRef]

2003 (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, "Secure communication using mesoscopic coherent states," Phys. Rev. Lett. 90, 227901 (2003).
[CrossRef] [PubMed]

2002 (1)

N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn, "Polarization squeezing and continuous-variable polarization entanglement," Phys. Rev. A 65, 052306 (2002).
[CrossRef]

2000 (1)

1998 (1)

M. J. Werner, "Quantum soliton generation using an interferometer," Phys. Rev. Lett. 81, 4132-4135 (1998).
[CrossRef]

1997 (3)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweeter, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 - 3295 (1997).
[CrossRef]

P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," SIAM J. Comput. 26, 1484-1509 (1997).
[CrossRef]

L. K. Grover, "Quantum mechanics helps in searching for a needle in a haystack," Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum states via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

1990 (1)

1980 (1)

R. H. Stolen, "Nonlinearity in fiber transmission," Proc. IEEE 68, 1232-1235 (1980).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

T. Tomaru, "Femtosecond pulse squeezing limited by stimulated Raman process in optical fibers," Opt. Commun. 273, 263-271 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn, "Polarization squeezing and continuous-variable polarization entanglement," Phys. Rev. A 65, 052306 (2002).
[CrossRef]

T. Tomaru and M. Ban, "Secure optical communication using antisqueezing," Phys. Rev. A 74, 032312 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, "Secure communication using mesoscopic coherent states," Phys. Rev. Lett. 90, 227901 (2003).
[CrossRef] [PubMed]

M. J. Werner, "Quantum soliton generation using an interferometer," Phys. Rev. Lett. 81, 4132-4135 (1998).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum states via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

L. K. Grover, "Quantum mechanics helps in searching for a needle in a haystack," Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

Proc. IEEE (1)

R. H. Stolen, "Nonlinearity in fiber transmission," Proc. IEEE 68, 1232-1235 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweeter, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 - 3295 (1997).
[CrossRef]

SIAM J. Comput. (1)

P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," SIAM J. Comput. 26, 1484-1509 (1997).
[CrossRef]

Other (3)

C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (India, 1984), pp. 175-179.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995).

C. R. Doerr, I. Lyubomirsky, G. Lenz, J. Paye, H. A. Haus, and M. Shirasaki, "Optical squeezing with a short fiber," in Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 1993) paper QFF3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Block diagram of experimental configuration. FR means a Faraday rotator.

Fig. 2.
Fig. 2.

Typical SSB noise traces measured at 10 MHz under conditions of 5-km fiber length and 17.6-dBm input power. The traces were averaged ten times. (a) Signal. (b, c) Local light noise detected at one of PDs. (d) Standard quantum limit. (e) Noise floor. Resolution bandwidth was 300 kHz and sweep time was 1 s.

Fig. 3.
Fig. 3.

Dependence of noise on frequency, measured with 14.4 GHz bandwidth balanced PDs. The signs (a, b, c, d, e) have similar meanings to those in Fig. 2.

Fig. 4.
Fig. 4.

Block diagram for feasibility study on secure optical communications.

Fig. 5.
Fig. 5.

Eye patterns. Signal light and local light are interfered with appropriate phase in (a), with 45°-off phase in (b), and with 90°-off phase in (c).

Tables (1)

Tables Icon

Table 1. Characteristics of antisqueezed light.

Metrics