Abstract

A Polarization-Conversion Guided Mode (PCGM) technique has been developed to quantify optical anisotropy as low as 10-5 for a surface layer only 10 nm thick. The optical geometry consists of an index-fluid matched prism-coupler and an air-gap waveguide comprising the thin sample on a glass plate as the incident surface with a gold reflector forming the other surface of the guide. This allows non-destructive characterization of the optical anisotropy of surface layers. The polarization conversion signal is extraordinarily sensitive. Thus the influence of the polarization purity of the incoming beam, very small twists and/or tilts between the normal to the prism bottom surface and the sample plane, have all been analyzed in detail to allow extraction of the sought for information about the thin layer. Rubbed polyimide thin films and incline-evaporated SiOx layers, both used for liquid crystal alignment, have been examined by this PCGM technique to demonstrate its power.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Weightman, D. S. Martin, R. J. Cole, and T. Farrell, "Reflection anisotropy spectroscopy," Rep. Prog. Phys. 68, 1251-1341 (2005).
    [CrossRef]
  2. B. Sheriden, D. S. Martin, J. R. Power, S. D. Barrett, C. I. Smith, R. J. Nichols, and P. Weightman, "Reflection Anisotropy Spectroscopy: A new probe for the Solid-Liquid Interface," Phys. Rev. Lett. 85, 4618-4621 (2000).
    [CrossRef]
  3. D. S. Martin, O. Zeybek, B. Sheridan, S. D. Barrett, P. Weightman, and S. Crampin, "Reflection anisotropy and surface electronic structure of W(110)," J. Phys. Condens Matter 13, L607-L612 (2001).
    [CrossRef]
  4. W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernhole, F. Bechstedt, M. Zorn, Th. Hannappel, S. Visbeck, F. Willing, and W. Richter, "Understanding reflectance anisotropy: Surface-state signature and bulk-related textures in the optical spectrum of InP(001)(2x4)," Phys. Rev. B 61, R16335-R16338 (2000).
  5. B. F. Macdonald, W. Zheng, R. J. Cole, and I. Underwood, "RAS-a new process control tool in liquid crystal device fabrication," J. Phys. D: Appl. Phys. 35, L41-L43 (2002).
    [CrossRef]
  6. B. F. Macdonald, W. Zheng, and R. J. Cole, "Reflection anisotropy spectroscopy: A probe of rubbed polyimide liquid crystal alignment layers," J. Appl. Phys. 93, 4442-4446 (2003).
    [CrossRef]
  7. F. Yang and J. R. Sambles, "Optical fully leaky mode characterization of a standard liquid crystal cell," J. Opt. Soc. Am. B 16, 488-497 (1999).
  8. I. Hirosawa, "Method of characterizing rubbed polyimide film for liquid crystal display devices using reflection Ellipsometry," Jpn. J. Appl. Phys. Part 1 35, 5873-5875(1996); "Influence of Annealing on molecular orientation of rubbed polyimide film observed by Reflection Ellipsometry," 36, 6953-6956 (1997).
    [CrossRef]
  9. K. Sahre, K. J. Eichhorn, F. Simon, D. Pleul, A. Jake, and G. Gerlach, "Charactrization of ion-beam modified polyimide layers," Surf. Coat.Technol. 139, 257-264 (2001).
    [CrossRef]
  10. J. Cognard, "Alignment of Nematic Liquid Crystals and their mixtures," Mol. Cryst. Liq. Cryst.Suppl. Ser. 1, 1-74 (1982).

2005

P. Weightman, D. S. Martin, R. J. Cole, and T. Farrell, "Reflection anisotropy spectroscopy," Rep. Prog. Phys. 68, 1251-1341 (2005).
[CrossRef]

2003

B. F. Macdonald, W. Zheng, and R. J. Cole, "Reflection anisotropy spectroscopy: A probe of rubbed polyimide liquid crystal alignment layers," J. Appl. Phys. 93, 4442-4446 (2003).
[CrossRef]

2002

B. F. Macdonald, W. Zheng, R. J. Cole, and I. Underwood, "RAS-a new process control tool in liquid crystal device fabrication," J. Phys. D: Appl. Phys. 35, L41-L43 (2002).
[CrossRef]

2001

K. Sahre, K. J. Eichhorn, F. Simon, D. Pleul, A. Jake, and G. Gerlach, "Charactrization of ion-beam modified polyimide layers," Surf. Coat.Technol. 139, 257-264 (2001).
[CrossRef]

D. S. Martin, O. Zeybek, B. Sheridan, S. D. Barrett, P. Weightman, and S. Crampin, "Reflection anisotropy and surface electronic structure of W(110)," J. Phys. Condens Matter 13, L607-L612 (2001).
[CrossRef]

2000

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernhole, F. Bechstedt, M. Zorn, Th. Hannappel, S. Visbeck, F. Willing, and W. Richter, "Understanding reflectance anisotropy: Surface-state signature and bulk-related textures in the optical spectrum of InP(001)(2x4)," Phys. Rev. B 61, R16335-R16338 (2000).

B. Sheriden, D. S. Martin, J. R. Power, S. D. Barrett, C. I. Smith, R. J. Nichols, and P. Weightman, "Reflection Anisotropy Spectroscopy: A new probe for the Solid-Liquid Interface," Phys. Rev. Lett. 85, 4618-4621 (2000).
[CrossRef]

1999

1982

J. Cognard, "Alignment of Nematic Liquid Crystals and their mixtures," Mol. Cryst. Liq. Cryst.Suppl. Ser. 1, 1-74 (1982).

J. Appl. Phys.

B. F. Macdonald, W. Zheng, and R. J. Cole, "Reflection anisotropy spectroscopy: A probe of rubbed polyimide liquid crystal alignment layers," J. Appl. Phys. 93, 4442-4446 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens Matter

D. S. Martin, O. Zeybek, B. Sheridan, S. D. Barrett, P. Weightman, and S. Crampin, "Reflection anisotropy and surface electronic structure of W(110)," J. Phys. Condens Matter 13, L607-L612 (2001).
[CrossRef]

J. Phys. D: Appl. Phys.

B. F. Macdonald, W. Zheng, R. J. Cole, and I. Underwood, "RAS-a new process control tool in liquid crystal device fabrication," J. Phys. D: Appl. Phys. 35, L41-L43 (2002).
[CrossRef]

Mol. Cryst. Liq. Cryst.

J. Cognard, "Alignment of Nematic Liquid Crystals and their mixtures," Mol. Cryst. Liq. Cryst.Suppl. Ser. 1, 1-74 (1982).

Phys. Rev. B

W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernhole, F. Bechstedt, M. Zorn, Th. Hannappel, S. Visbeck, F. Willing, and W. Richter, "Understanding reflectance anisotropy: Surface-state signature and bulk-related textures in the optical spectrum of InP(001)(2x4)," Phys. Rev. B 61, R16335-R16338 (2000).

Phys. Rev. Lett.

B. Sheriden, D. S. Martin, J. R. Power, S. D. Barrett, C. I. Smith, R. J. Nichols, and P. Weightman, "Reflection Anisotropy Spectroscopy: A new probe for the Solid-Liquid Interface," Phys. Rev. Lett. 85, 4618-4621 (2000).
[CrossRef]

Rep. Prog. Phys.

P. Weightman, D. S. Martin, R. J. Cole, and T. Farrell, "Reflection anisotropy spectroscopy," Rep. Prog. Phys. 68, 1251-1341 (2005).
[CrossRef]

Technol.

K. Sahre, K. J. Eichhorn, F. Simon, D. Pleul, A. Jake, and G. Gerlach, "Charactrization of ion-beam modified polyimide layers," Surf. Coat.Technol. 139, 257-264 (2001).
[CrossRef]

Other

I. Hirosawa, "Method of characterizing rubbed polyimide film for liquid crystal display devices using reflection Ellipsometry," Jpn. J. Appl. Phys. Part 1 35, 5873-5875(1996); "Influence of Annealing on molecular orientation of rubbed polyimide film observed by Reflection Ellipsometry," 36, 6953-6956 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The sample geometry of the PCGM technique.

Fig. 2.
Fig. 2.

Diagram for analyzing the extra pseudo-p to s conversion due to sample tilt.

Fig. 3.
Fig. 3.

Experimentally recorded Rps signals (+45°, full circles 90o and open circles 0°) against the external incident angle for different sample rotations for two rubbed polyimide layers: (a) once rubbed and (b) twice rubbed. The solid lines are the model fits for 45° sample rotation.

Fig. 4.
Fig. 4.

Experimentally recorded Rps signals against the external incident angle for an angleevaporated SiOx layer. The data for the bare prism is also shown.

Metrics