Abstract

We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
  2. B. Jalali, M. Paniccia, G. Reed, "Silicon photonics," IEEE Microwave Mag. 7, 58-68 (2006).
    [CrossRef]
  3. M. Lipson, "Guiding, modulating, and emitting light on Silicon-challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
    [CrossRef]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
  5. J. E. Roth, O Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, "Optical modulator on silicon employing germanium quantum wells," Opt. Express 15, 5851-5859 (2007).
    [CrossRef]
  6. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express 15, 430-436 (2007).
  7. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef]
  8. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
    [CrossRef]
  9. H. Rong,  et al., "Silicon based laser, amplifier, and wavelength converter for optoelectronic integration," Proc. SPIE 6125, 37-49 (2006).
  10. D. Pasquariello, and K. Hjort, "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Top. Quantum Electron. 8, 118-130 (2002).
  11. Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, "Low temperature InP/Si wafer bonding," Appl. Phys. Lett. 84, 732-734 (2004).
    [CrossRef]
  12. A. W Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
    [CrossRef]
  13. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007).
    [CrossRef]
  14. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 15, 2315-2322 (2007).
    [CrossRef]
  15. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "A Hybrid AlGaInAs-Silicon Evanescent Amplifier," IEEE Photon. Technol. Lett. 19, 230-232 (2007).
    [CrossRef]
  16. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, "Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications," J. Lightwave Technol. 24, 2701-2719 (2006).
    [CrossRef]
  17. K. Minoshima and H. Mataumoto, "High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser," Appl. Opt. 39, 5512-5517 (2000).
  18. D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
    [CrossRef]
  19. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
    [CrossRef]
  20. S. Arahira and Y. Ogawa, "Retiming and reshaping function of all optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode," IEEE J. Quantum Electron. 41, 937-944 (2005).
    [CrossRef]
  21. B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, "Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery," IEEE Photon. Technol. Lett. 19, 641-643 (2007).
    [CrossRef]
  22. S. Arahira and Y. Ogawa, "Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode," IEEE Photon. Technol. Lett. 18, 1765-1767 (2005).
  23. I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993).
    [CrossRef]
  24. S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, "500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode," Appl. Phys. Lett. 64, 1917-1919 (1994).
    [CrossRef]
  25. S. Arahira and Y. Ogawa, "40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection," Jpn. J. Appl. Phys. 43, 1960-1964 (2004).
    [CrossRef]
  26. Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck, Y. S. Oei, R. Notzel, and M. K. Smit, "Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53 µm," Opt. Express 14, 9716-9727 (2005).
  27. C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, "Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser," IEEE Photon. Technol. Lett. 18, 625-627 (2006).
    [CrossRef]
  28. H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quant. Electron. 11, 736-746 (1975).
    [CrossRef]
  29. D. J. Derickson, A. Mar, and J. E. Bowers, "Residual and absolute timing jitter in actively mode-locked semiconductor lasers," Electron. Lett,  26, 2026-2028 (1990).
    [CrossRef]

2007 (7)

2006 (6)

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, "Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications," J. Lightwave Technol. 24, 2701-2719 (2006).
[CrossRef]

A. W Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
[CrossRef]

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, "Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser," IEEE Photon. Technol. Lett. 18, 625-627 (2006).
[CrossRef]

R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).

B. Jalali, M. Paniccia, G. Reed, "Silicon photonics," IEEE Microwave Mag. 7, 58-68 (2006).
[CrossRef]

H. Rong,  et al., "Silicon based laser, amplifier, and wavelength converter for optoelectronic integration," Proc. SPIE 6125, 37-49 (2006).

2005 (5)

S. Arahira and Y. Ogawa, "Retiming and reshaping function of all optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode," IEEE J. Quantum Electron. 41, 937-944 (2005).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef]

S. Arahira and Y. Ogawa, "Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode," IEEE Photon. Technol. Lett. 18, 1765-1767 (2005).

Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck, Y. S. Oei, R. Notzel, and M. K. Smit, "Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53 µm," Opt. Express 14, 9716-9727 (2005).

M. Lipson, "Guiding, modulating, and emitting light on Silicon-challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
[CrossRef]

2004 (3)

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef]

S. Arahira and Y. Ogawa, "40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection," Jpn. J. Appl. Phys. 43, 1960-1964 (2004).
[CrossRef]

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, "Low temperature InP/Si wafer bonding," Appl. Phys. Lett. 84, 732-734 (2004).
[CrossRef]

2002 (1)

D. Pasquariello, and K. Hjort, "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Top. Quantum Electron. 8, 118-130 (2002).

2000 (2)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
[CrossRef]

K. Minoshima and H. Mataumoto, "High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser," Appl. Opt. 39, 5512-5517 (2000).

1994 (1)

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, "500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode," Appl. Phys. Lett. 64, 1917-1919 (1994).
[CrossRef]

1993 (1)

I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993).
[CrossRef]

1992 (1)

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

1990 (1)

D. J. Derickson, A. Mar, and J. E. Bowers, "Residual and absolute timing jitter in actively mode-locked semiconductor lasers," Electron. Lett,  26, 2026-2028 (1990).
[CrossRef]

1975 (1)

H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quant. Electron. 11, 736-746 (1975).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, "500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode," Appl. Phys. Lett. 64, 1917-1919 (1994).
[CrossRef]

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, "Low temperature InP/Si wafer bonding," Appl. Phys. Lett. 84, 732-734 (2004).
[CrossRef]

Electron. Lett (1)

D. J. Derickson, A. Mar, and J. E. Bowers, "Residual and absolute timing jitter in actively mode-locked semiconductor lasers," Electron. Lett,  26, 2026-2028 (1990).
[CrossRef]

IEE Proc. Optoelectron. (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Arahira and Y. Ogawa, "Retiming and reshaping function of all optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode," IEEE J. Quantum Electron. 41, 937-944 (2005).
[CrossRef]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

I. Kim and K. Y. Lau, "Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies," IEEE J. Quantum Electron. 29, 1081-1090 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Pasquariello, and K. Hjort, "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Top. Quantum Electron. 8, 118-130 (2002).

R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).

IEEE Microwave Mag. (1)

B. Jalali, M. Paniccia, G. Reed, "Silicon photonics," IEEE Microwave Mag. 7, 58-68 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, "Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery," IEEE Photon. Technol. Lett. 19, 641-643 (2007).
[CrossRef]

S. Arahira and Y. Ogawa, "Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode," IEEE Photon. Technol. Lett. 18, 1765-1767 (2005).

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "A Hybrid AlGaInAs-Silicon Evanescent Amplifier," IEEE Photon. Technol. Lett. 19, 230-232 (2007).
[CrossRef]

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, "Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser," IEEE Photon. Technol. Lett. 18, 625-627 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Quant. Electron. (1)

H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quant. Electron. 11, 736-746 (1975).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Arahira and Y. Ogawa, "40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection," Jpn. J. Appl. Phys. 43, 1960-1964 (2004).
[CrossRef]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef]

Opt. Express (8)

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef]

A. W Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
[CrossRef]

Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck, Y. S. Oei, R. Notzel, and M. K. Smit, "Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53 µm," Opt. Express 14, 9716-9727 (2005).

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express 15, 430-436 (2007).

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 15, 2315-2322 (2007).
[CrossRef]

J. E. Roth, O Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, "Optical modulator on silicon employing germanium quantum wells," Opt. Express 15, 5851-5859 (2007).
[CrossRef]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007).
[CrossRef]

Proc. SPIE (1)

H. Rong,  et al., "Silicon based laser, amplifier, and wavelength converter for optoelectronic integration," Proc. SPIE 6125, 37-49 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics