Abstract

We experimentally demonstrate a simple and novel technique to simultaneously insert a liquid into the core of a hollow-core photonic crystal fiber (PCF) and a different liquid into its cladding. The result is a liquid-core, liquid-cladding waveguide in which the two liquids can be selected to yield specific guidance characteristics. As an example, we tuned the core-cladding index difference by proper choice of the inserted liquids to obtain control over the number of guided modes. Single-mode guidance was achieved for a particular choice of liquids. We also experimentally and theoretically investigated the nature of light confinement and observed the transition from photonic bandgap to total internal reflection guidance both with the core-cladding index contrast and with the PCF length.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
    [CrossRef]
  2. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  3. H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, "Toward photonic crystal fiber based distributed chemosensors," 17th International Conference on Optical Fibre Sensors, SPIE 5855, 419-422 (2005)
  4. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, " Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
    [CrossRef] [PubMed]
  5. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. (to be published).
  6. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005)
    [CrossRef] [PubMed]
  7. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. -L. Auguste, and J. -M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
    [CrossRef] [PubMed]
  8. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
    [CrossRef]
  9. C. Kerbage and B. J. Eggleton "Tunable microfluidic optical fiber gratings," Appl. Phys. Lett. 82, 1338-1340 (2003).
    [CrossRef]
  10. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
    [CrossRef]
  11. A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, "Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers," Opt. Express 13, 2977-2987 (2005).
    [CrossRef] [PubMed]
  12. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  13. F. Du, Y.-Q. Lu, and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
    [CrossRef]
  14. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
    [CrossRef]
  15. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, "Fluidic fibre dye lasers," Opt. Express 15, 3962-3967 (2007).
    [CrossRef] [PubMed]
  16. C. J. S. de Matos, L. de S. Menezes, A. M. Silva, M. A. Martinez Gamez, A. S.L. Gomes, and C. B. de Araujo, "Random Laser Action inside a Photonic Crystal Fiber," in Conference on Lasers and Electro-Optics 2007, paper JThD107.
  17. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation, " Opt. Express 14, 6800-6812 (2006).
    [CrossRef] [PubMed]
  18. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser," Opt. Lett. 30, 1980-1982 (2005).
    [CrossRef] [PubMed]
  19. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
    [CrossRef]
  20. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  21. C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006).
    [CrossRef] [PubMed]
  22. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890-3895 (2005).
    [CrossRef] [PubMed]
  23. H. Takiguchi, T. Odake, M. Ozaki, T. Umemura, and K.-I. Tsunoda, "Liquid/Liquid Optical Waveguides using sheath flow as a new tool for liquid/liquid interfacial measurements," Appl. Spectrosc. 57, 1039-1041 (2003).
    [CrossRef] [PubMed]
  24. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, "Dynamic control of liquid-core/liquid-cladding optical waveguides," Proc. Natl. Acad. Sci. U.S.A. 101, 12434-12438 (2004).
    [CrossRef] [PubMed]

2007 (1)

2006 (5)

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, " Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation, " Opt. Express 14, 6800-6812 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006).
[CrossRef] [PubMed]

2005 (6)

2004 (4)

F. Du, Y.-Q. Lu, and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, "Dynamic control of liquid-core/liquid-cladding optical waveguides," Proc. Natl. Acad. Sci. U.S.A. 101, 12434-12438 (2004).
[CrossRef] [PubMed]

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

2003 (3)

2002 (1)

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, and B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

C. Kerbage and B. J. Eggleton "Tunable microfluidic optical fiber gratings," Appl. Phys. Lett. 82, 1338-1340 (2003).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Electron. Lett. (2)

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

Meas. Sci. Technol. (3)

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. (to be published).

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Opt. Express (10)

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, " Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, "Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers," Opt. Express 13, 2977-2987 (2005).
[CrossRef] [PubMed]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890-3895 (2005).
[CrossRef] [PubMed]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. -L. Auguste, and J. -M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
[CrossRef] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005)
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
[CrossRef] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation, " Opt. Express 14, 6800-6812 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006).
[CrossRef] [PubMed]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, "Fluidic fibre dye lasers," Opt. Express 15, 3962-3967 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, "Dynamic control of liquid-core/liquid-cladding optical waveguides," Proc. Natl. Acad. Sci. U.S.A. 101, 12434-12438 (2004).
[CrossRef] [PubMed]

Other (2)

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, "Toward photonic crystal fiber based distributed chemosensors," 17th International Conference on Optical Fibre Sensors, SPIE 5855, 419-422 (2005)

C. J. S. de Matos, L. de S. Menezes, A. M. Silva, M. A. Martinez Gamez, A. S.L. Gomes, and C. B. de Araujo, "Random Laser Action inside a Photonic Crystal Fiber," in Conference on Lasers and Electro-Optics 2007, paper JThD107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Doubly selective filling method to insert one liquid into the cladding holes and another liquid into the core of a PCF. Inset: scanning electron micrograph of the PCF cross section.

Fig. 2.
Fig. 2.

Near field images of guided light exiting a PCF with a water-filled cladding and a liquid core with refractive indices of 1.353 (a), 1.390 (b), and 1.417 (c).

Fig. 3.
Fig. 3.

(a) Normalized transmission spectrum obtained in a 23-mm water-core, water-cladding PCF exhibiting bandgap structures; (b) and (c) near-field images of the light exiting a 22 mm (b) and a 53 mm (c) sample of the water-core, water-cladding PCF.

Fig. 4.
Fig. 4.

Simulated electric field intensity distributions (in log scale) at 633 nm in a water-cladding (index of 1.375) PCF for core refractive indices of 1.373 (a) 1.375 (b) and 1.379 (c). Propagation losses are found to be 4.6 dB/cm, 8×10-7 dB/cm and 1×10-11 dB/cm, respectively.

Metrics