Abstract

In this work we present extensive comparisons between numerical modelling and experimental measurements of the transmission performance of either CSRZ-ASK or CSRZ-DPSK modulation formats for 40-Gb/s WDM ULH systems on UltraWaveTM fiber spans with all-Raman amplification. We numerically optimised the amplification and the signal format parameters for both CSRZ-DPSK and CSRZ-ASK formats. Numerical and experimental results show that, in a properly optimized transmission link, the DPSK format permits to double the transmission distance (for a given BER level) with respect to the ASK format, while keeping a substantial OSNR margin (on ASK modulation) after the propagation in the fiber line. Our comparison between numerical and experimental results permits to identify what is the most suitable BER estimator in assessing the transmission performance when using the DPSK format.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Mintera achieves record ultra long haul transmission distance at 40 Gb/s", March 2002; "Migrating to 40-Gbit/sec DWDM networks," FibreSystems Europe, September 2002, www.mintera.com.
  2. "Lucent Technologies ships its new, industry-leading optical system - LambdaXtreme™ transport - to Deutsche Telekom," Lucent press release, March 2002, www.lucent.com
  3. "Lambdaxtreme™ Transport successfully completes field trial in Deutsche Telekom network," Lucent press release, July 2002, www.lucent.com.
  4. "CoreStream Agility Optical Transport system data sheet," January 2007, www.ciena.com.
  5. "Alcatel 1626 Light Manager data sheet," January 2007, www.alcatel-lucent.com.
  6. "MCI, Xtera, Mintera, and Juniper Networks Show High-Bandwidth Optical Technology Capable of Reaching Farther Distances over Existing Fiber Networks," FibreSystems Europe, December 2005, www.mintera.com.
  7. "40G moves back onto the agenda," FibreSystems Europe, May 2004, www.strataligtht.com.
  8. B. Zhu, L. E. Nelson, L. Leng, M. O. Pedersen, D. W. Peckham, and S. L. Stulz, "Transmission of 1.6 Tb/s (40 x 42.7 Gb/s) Over Transoceanic Distance with Terrestrial 100-km Amplifier Spans," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper FN2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-FN2.
  9. B. Zhu, L. Nelson, L. Leng, S. Stulz, S. Knudsen, and D. Peckham, " 1.6 Tb/s (40 x 42.7 Gb/s) transmission over 2400 km of fibre with 100-km dispersion-managed spans," Electron. Lett. 38, 647-648 (2002).
    [CrossRef]
  10. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. Van Der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, "DWDM 40 Gb/s Transmission over Transpacific distance (10000 km) using CSRZ-DPSK, enhanced FEC, and All-Raman amplified 100-km Ultrawave fiber spans," J. Lightwave Technol. 10, 281-293 (2004).
  11. B. Zhu, L. E. Nelson, S. Stulz, A. H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M. O. Pedersen, J. Kim, R. Lingle, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, and S. Namiki, "6.4-Tb/s (160 x 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 x 100 km of fiber using CSRZ-DPSK format," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD19. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-PD19.
  12. T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, and N. Edagawa, "70GHz-spaced 40 x 42.7Gbit/s transmission over 8700km using CS-RZ DPSK signal, all-Raman repeaters and symmetrically dispersion-managed fiber span," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD23. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-PD23.
  13. B. Zhu, L. Leng, A. H. Gnauck, M. O. Pedersen, D. Peckham, L. E. Nelson, S. Stulz, S. Kado, L. Grüner-Nielsen, R. L. Lingle, S. Knudsen, J. Leuthold, C. Doerr, S. Chandrasekhar, G. Baynham, P. Gaarde, Y. Emori, and S. Namiki, "Transmission of 3.2 Tb/s (80 x 42.7 Gb/s) over 5200 km of UltraWave fiber with 100-km dispersion managed spans using RZ-DPSK format," in Proceedings ECOC '2002, DK, Copenhaguen, paper PD4.2.
  14. C. Rasmussen, S. Dey, F. Liu, J. Bennike, B. Mikkelsen, P. Mamyshev, M. Kimmitt, K. Springer, D. Gapontsev, and V. Ivshin, "Transmission of 40x42.7 Gb/s over 5200 km ultraWave fiber with terrestrial 100 km spans using turn-key ETDM transmitter and receiver," in Proceedings ECOC '2002, DK, Copenhaguen, paper PD4.4.
  15. C. J. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, "DWDM 40G transmission over trans-Pacific distance (10,000km) using CSRZ-DPSK, enhanced FEC and all-Raman amplified 100km UltraWave™ fiber spans," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD18. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-PD18>.
  16. T. Hoshida, O. Vassilieva, K. Yamada, S. Choudhary, R. Pecqueur, and H. Kuwahara, "Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems," J. Lightwave Technol. 20, 1989-1996 (2002).
    [CrossRef]
  17. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, "2.5 Tb/s (64x42.7 Gb/s) transmission over 40x100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans," in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FC2.
  18. J. D. Ania-Castañón, I. O. Nasieva, N. Kurukitkoson, S. K. Turitsyn, C. Borsier, and E. Pincemin, "Nonlinearity management in fiber transmission systems with hybrid amplification," Opt. Commun. 233, 353 (2004).
    [CrossRef]
  19. A. Judy, "Dispersion Managed Spans in Terrestrial Routes: Technical Advantages and Practical Considerations," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper TuS1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-TuS1
  20. C. Xu, X. Liu, and X. Wei, "DPSK for high spectral efficiency optical transmissions,"IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
    [CrossRef]
  21. X. Wei and X. Liu, "Analysis of intrachannel four-wave mixing in differential phase-shift keying transmission with large dispersion," Opt. Lett. 28, 2300-2302 (2003).
    [CrossRef] [PubMed]
  22. R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, "Reduction of intrachannel nonlinear distortion in 40-Gb/s-based WDM transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
    [CrossRef]
  23. E. Pincemin, D. Grot, C. Borsier, J. D. Ania-Castañòn, and S. K. Turitsyn, "Impact of the fiber type and dispersion management on the performance of an NRZ 16x40 Gb/s DWDM transmission system," IEEE Photon. Technol. Lett. 16, 2362-2364 (2004).
    [CrossRef]
  24. J. P. Gordon and L. F. Mollenauer, "Phase noise in photonics communications systems using linear amplifier," Opt. Lett. 15, 1351-1355 (1990).
    [CrossRef] [PubMed]
  25. D. Marcuse, "Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers," J. Lightwave Technol. 8, 1816-1823 (1990).
    [CrossRef]
  26. P. A. Humblet and M. Azizoglu, "On the bit error rate of lightwave systems with optical amplifiers," J. Lightwave Technol. 9, 1576-1582 (1991).
    [CrossRef]
  27. A. Richter, I. Koltchanov, K. Kuzmin, E. Myslivets, and R. Freund, " Issues on Bit-Error Rate Estimation for Fiber-Optic Communication Systems," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper NTuH3. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2005-NTuH3
  28. M. K. Liu, A. C. Vrahas, and M. J. B. Moretti, "Saddle point bit error rate computations for optical communication systems incorporating equalizers," IEEE Trans. Commun. 43, 989-1000 (1995).
    [CrossRef]
  29. "CHROMOS11 optical network chromatic dispersion and PMD test set data sheet," September 2005, www.pefiberoptics.com.

2004

C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. Van Der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, "DWDM 40 Gb/s Transmission over Transpacific distance (10000 km) using CSRZ-DPSK, enhanced FEC, and All-Raman amplified 100-km Ultrawave fiber spans," J. Lightwave Technol. 10, 281-293 (2004).

J. D. Ania-Castañón, I. O. Nasieva, N. Kurukitkoson, S. K. Turitsyn, C. Borsier, and E. Pincemin, "Nonlinearity management in fiber transmission systems with hybrid amplification," Opt. Commun. 233, 353 (2004).
[CrossRef]

C. Xu, X. Liu, and X. Wei, "DPSK for high spectral efficiency optical transmissions,"IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

E. Pincemin, D. Grot, C. Borsier, J. D. Ania-Castañòn, and S. K. Turitsyn, "Impact of the fiber type and dispersion management on the performance of an NRZ 16x40 Gb/s DWDM transmission system," IEEE Photon. Technol. Lett. 16, 2362-2364 (2004).
[CrossRef]

2003

2002

T. Hoshida, O. Vassilieva, K. Yamada, S. Choudhary, R. Pecqueur, and H. Kuwahara, "Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems," J. Lightwave Technol. 20, 1989-1996 (2002).
[CrossRef]

B. Zhu, L. Nelson, L. Leng, S. Stulz, S. Knudsen, and D. Peckham, " 1.6 Tb/s (40 x 42.7 Gb/s) transmission over 2400 km of fibre with 100-km dispersion-managed spans," Electron. Lett. 38, 647-648 (2002).
[CrossRef]

2000

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, "Reduction of intrachannel nonlinear distortion in 40-Gb/s-based WDM transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
[CrossRef]

1995

M. K. Liu, A. C. Vrahas, and M. J. B. Moretti, "Saddle point bit error rate computations for optical communication systems incorporating equalizers," IEEE Trans. Commun. 43, 989-1000 (1995).
[CrossRef]

1991

P. A. Humblet and M. Azizoglu, "On the bit error rate of lightwave systems with optical amplifiers," J. Lightwave Technol. 9, 1576-1582 (1991).
[CrossRef]

1990

D. Marcuse, "Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers," J. Lightwave Technol. 8, 1816-1823 (1990).
[CrossRef]

J. P. Gordon and L. F. Mollenauer, "Phase noise in photonics communications systems using linear amplifier," Opt. Lett. 15, 1351-1355 (1990).
[CrossRef] [PubMed]

Electron. Lett.

B. Zhu, L. Nelson, L. Leng, S. Stulz, S. Knudsen, and D. Peckham, " 1.6 Tb/s (40 x 42.7 Gb/s) transmission over 2400 km of fibre with 100-km dispersion-managed spans," Electron. Lett. 38, 647-648 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, "Reduction of intrachannel nonlinear distortion in 40-Gb/s-based WDM transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
[CrossRef]

E. Pincemin, D. Grot, C. Borsier, J. D. Ania-Castañòn, and S. K. Turitsyn, "Impact of the fiber type and dispersion management on the performance of an NRZ 16x40 Gb/s DWDM transmission system," IEEE Photon. Technol. Lett. 16, 2362-2364 (2004).
[CrossRef]

IEEE Trans. Commun.

M. K. Liu, A. C. Vrahas, and M. J. B. Moretti, "Saddle point bit error rate computations for optical communication systems incorporating equalizers," IEEE Trans. Commun. 43, 989-1000 (1995).
[CrossRef]

J. Lightwave Technol.

D. Marcuse, "Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers," J. Lightwave Technol. 8, 1816-1823 (1990).
[CrossRef]

P. A. Humblet and M. Azizoglu, "On the bit error rate of lightwave systems with optical amplifiers," J. Lightwave Technol. 9, 1576-1582 (1991).
[CrossRef]

T. Hoshida, O. Vassilieva, K. Yamada, S. Choudhary, R. Pecqueur, and H. Kuwahara, "Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems," J. Lightwave Technol. 20, 1989-1996 (2002).
[CrossRef]

C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. Van Der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, "DWDM 40 Gb/s Transmission over Transpacific distance (10000 km) using CSRZ-DPSK, enhanced FEC, and All-Raman amplified 100-km Ultrawave fiber spans," J. Lightwave Technol. 10, 281-293 (2004).

J. Sel. Top. Quantum Electron.

C. Xu, X. Liu, and X. Wei, "DPSK for high spectral efficiency optical transmissions,"IEEE J. Sel. Top. Quantum Electron. 10, 281-293 (2004).
[CrossRef]

Opt. Commun.

J. D. Ania-Castañón, I. O. Nasieva, N. Kurukitkoson, S. K. Turitsyn, C. Borsier, and E. Pincemin, "Nonlinearity management in fiber transmission systems with hybrid amplification," Opt. Commun. 233, 353 (2004).
[CrossRef]

Opt. Lett.

Other

"CHROMOS11 optical network chromatic dispersion and PMD test set data sheet," September 2005, www.pefiberoptics.com.

A. Judy, "Dispersion Managed Spans in Terrestrial Routes: Technical Advantages and Practical Considerations," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper TuS1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-TuS1

A. Richter, I. Koltchanov, K. Kuzmin, E. Myslivets, and R. Freund, " Issues on Bit-Error Rate Estimation for Fiber-Optic Communication Systems," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper NTuH3. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2005-NTuH3

B. Zhu, L. E. Nelson, S. Stulz, A. H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M. O. Pedersen, J. Kim, R. Lingle, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, and S. Namiki, "6.4-Tb/s (160 x 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 x 100 km of fiber using CSRZ-DPSK format," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD19. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-PD19.

T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, and N. Edagawa, "70GHz-spaced 40 x 42.7Gbit/s transmission over 8700km using CS-RZ DPSK signal, all-Raman repeaters and symmetrically dispersion-managed fiber span," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD23. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-PD23.

B. Zhu, L. Leng, A. H. Gnauck, M. O. Pedersen, D. Peckham, L. E. Nelson, S. Stulz, S. Kado, L. Grüner-Nielsen, R. L. Lingle, S. Knudsen, J. Leuthold, C. Doerr, S. Chandrasekhar, G. Baynham, P. Gaarde, Y. Emori, and S. Namiki, "Transmission of 3.2 Tb/s (80 x 42.7 Gb/s) over 5200 km of UltraWave fiber with 100-km dispersion managed spans using RZ-DPSK format," in Proceedings ECOC '2002, DK, Copenhaguen, paper PD4.2.

C. Rasmussen, S. Dey, F. Liu, J. Bennike, B. Mikkelsen, P. Mamyshev, M. Kimmitt, K. Springer, D. Gapontsev, and V. Ivshin, "Transmission of 40x42.7 Gb/s over 5200 km ultraWave fiber with terrestrial 100 km spans using turn-key ETDM transmitter and receiver," in Proceedings ECOC '2002, DK, Copenhaguen, paper PD4.4.

C. J. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, "DWDM 40G transmission over trans-Pacific distance (10,000km) using CSRZ-DPSK, enhanced FEC and all-Raman amplified 100km UltraWave™ fiber spans," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD18. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-PD18>.

A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, "2.5 Tb/s (64x42.7 Gb/s) transmission over 40x100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans," in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper FC2.

Mintera achieves record ultra long haul transmission distance at 40 Gb/s", March 2002; "Migrating to 40-Gbit/sec DWDM networks," FibreSystems Europe, September 2002, www.mintera.com.

"Lucent Technologies ships its new, industry-leading optical system - LambdaXtreme™ transport - to Deutsche Telekom," Lucent press release, March 2002, www.lucent.com

"Lambdaxtreme™ Transport successfully completes field trial in Deutsche Telekom network," Lucent press release, July 2002, www.lucent.com.

"CoreStream Agility Optical Transport system data sheet," January 2007, www.ciena.com.

"Alcatel 1626 Light Manager data sheet," January 2007, www.alcatel-lucent.com.

"MCI, Xtera, Mintera, and Juniper Networks Show High-Bandwidth Optical Technology Capable of Reaching Farther Distances over Existing Fiber Networks," FibreSystems Europe, December 2005, www.mintera.com.

"40G moves back onto the agenda," FibreSystems Europe, May 2004, www.strataligtht.com.

B. Zhu, L. E. Nelson, L. Leng, M. O. Pedersen, D. W. Peckham, and S. L. Stulz, "Transmission of 1.6 Tb/s (40 x 42.7 Gb/s) Over Transoceanic Distance with Terrestrial 100-km Amplifier Spans," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper FN2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-FN2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig 1.
Fig 1.

Schematic of the experimental set-up.

Fig 2.
Fig 2.

Temporal and spectral characterization of our transmitters: CSRZ-ASK (top), CSRZ-DPSK (bottom).

Fig 3.
Fig 3.

Left: Dispersion map on the first two loop round-trips for the channel at 1550 nm. Right: Theoretical nonlinear phase shift versus the ratio of backward to total Raman gain.

Fig 4.
Fig 4.

Left: numerical estimation of the output Q factor [dB] as a function of the pre-compensation and of the residual loop dispersion for a transmission over 2000 km using the CSRZ-ASK format. Right: case of the CSRZ-DPSK format for a transmission over 4000 km. The input power per channel is equal to -3 dBm.

Fig 5.
Fig 5.

Left: numerical estimation of the output Q factor [dB] at 2000 km as a function of the pre-compensation and per-channel input power for CSRZ-ASK format transmission. Right: output Q factor at 4000 km for the CSRZ-DPSK format transmission.

Fig 6.
Fig 6.

Comparisons of BER predictions (versus received OSNR in 1 nm after a 4000 km UltraWaveTM link) and experiments for the CSRZ-DPSK format. △ Numerical BER from the Q factor; ◦: BER from experiments; ▫: BER from semi-analytical approach; ∙ BER from differential phase Q. Insets: phasor diagrams (optical field) for input channel powers of either - 6 dBm (left plot) or 0 dBm (right plot).

Fig 7.
Fig 7.

(a) BER versus pre-compensation at 2000 km for CSRZ-ASK and at 4000 km for CSRZ-DPSK for the central channel at 1550 nm, (b) BER versus residual chromatic dispersion of the central channel at 1550 nm at 2000 km for CSRZ-ASK and at 4000 km for CSRZ-DPSK.

Fig 8.
Fig 8.

(a) BER versus span input power of the central channel at 1550 nm at different transmission distances for CSRZ-ASK, (b) BER versus span input power of the central channel at 1550 nm at different transmission distances for CSRZ-DPSK.

Fig 9.
Fig 9.

(a) BER and OSNR of the central channel at 1550 nm versus transmission distance for CSRZ-ASK and CSRZ-DPSK, (b) BER versus OSNR of the central channel at 1550 nm after 2000 km for CSRZ-ASK (filled purple lozenges) and after 4000 km for CSRZ-DPSK (empty red triangles) and in back-to-back for the both modulation formats (filled purple circles for CSRZ-ASK and empty red circles for CSRZ-DPSK).

Metrics