Abstract

We propose and demonstrate polarization rotation of a terahertz (THz) electromagnetic wave by using two-dimensional gratings consisting of two displaced layers of gold film with complimentary chiral patterns with four-fold symmetry. We develop a time domain THz polarimetry method with three wire grid polarizers and distinguish optical activity from optical anisotropy. We obtain the isotropic polarization rotation of a terahertz wave free from the birefringence of the structures. Results indicate the possibility of controlling THz polarization with artificial chiral structures fabricated with thin metal films.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami
Opt. Express 15(15) 9575-9583 (2007)

Observation of extraordinary optical activity in planar chiral photonic crystals

Kuniaki Konishi, Benfeng Bai, Xiangfeng Meng, Petri Karvinen, Jari Turunen, Yuri. P. Svirko, and Makoto Kuwata-Gonokami
Opt. Express 16(10) 7189-7196 (2008)

Optical chirality without optical activity: How surface plasmons give a twist to light

Aurélien Drezet, Cyriaque Genet, Jean-Yves Laluet, and Thomas W. Ebbesen
Opt. Express 16(17) 12559-12570 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Non-contact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
    [Crossref]
  2. M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of alltrans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
    [Crossref]
  3. N. Nagai, R. Kumazawa, and R. Fukuyama, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett. 413, 495–500 (2005).
    [Crossref]
  4. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
    [Crossref]
  5. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  6. T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
    [Crossref]
  7. B. Parks, S. Spielman, and J. Orenstein, “High-frequency Hall effect in the normal state of YBa2Cu3O7,” Phys. Rev. B 56, 115–117 (1997).
    [Crossref]
  8. K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
    [Crossref] [PubMed]
  9. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
    [Crossref] [PubMed]
  10. R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81, 199–201 (2002).
    [Crossref]
  11. Y. Ino, R. Shimano, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70, 155101 (2004).
    [Crossref]
  12. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging” Opt. Lett. 30, 2802–2804 (2005).
    [Crossref] [PubMed]
  13. P. YEH, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
    [Crossref]
  14. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [Crossref] [PubMed]
  15. H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
    [Crossref] [PubMed]
  16. F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett. 89, 211105 (2006).
    [Crossref]
  17. A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
    [Crossref] [PubMed]
  18. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett. 97, 177401 (2006).
    [Crossref] [PubMed]
  19. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).
    [Crossref] [PubMed]
  20. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
    [Crossref] [PubMed]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
    [Crossref] [PubMed]
  22. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
    [Crossref]
  23. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express. 15, 9575–9583 (2007).
    [Crossref] [PubMed]
  24. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
    [Crossref]
  25. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
    [Crossref]
  26. F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
    [Crossref]
  27. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
    [Crossref]
  28. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975) 2nd Edition.

2007 (4)

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express. 15, 9575–9583 (2007).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).
[Crossref] [PubMed]

2006 (4)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett. 89, 211105 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[Crossref]

2005 (4)

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

N. Nagai, R. Kumazawa, and R. Fukuyama, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett. 413, 495–500 (2005).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging” Opt. Lett. 30, 2802–2804 (2005).
[Crossref] [PubMed]

2004 (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Y. Ino, R. Shimano, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70, 155101 (2004).
[Crossref]

2003 (3)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

2002 (2)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81, 199–201 (2002).
[Crossref]

2000 (1)

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of alltrans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[Crossref]

1997 (2)

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Non-contact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[Crossref]

B. Parks, S. Spielman, and J. Orenstein, “High-frequency Hall effect in the normal state of YBa2Cu3O7,” Phys. Rev. B 56, 115–117 (1997).
[Crossref]

1996 (1)

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

1993 (1)

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

1978 (1)

P. YEH, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[Crossref]

Alexander, M.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

Averitt, R. D.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Bagnall, D.M.

A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Bai, B.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express. 15, 9575–9583 (2007).
[Crossref] [PubMed]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Bliss, D.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Cunningham, J.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Non-contact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[Crossref]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Decker, M.

Esquinazi, P.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[Crossref]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Fedotov, V. A.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Fischer, B.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of alltrans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Fukuyama, R.

N. Nagai, R. Kumazawa, and R. Fukuyama, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett. 413, 495–500 (2005).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Geva, M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Non-contact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Hangyo, M.

F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett. 89, 211105 (2006).
[Crossref]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

Helm, H.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of alltrans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Herzinger, C. M.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[Crossref]

Highstrete, C.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

Hofmann, T.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Y. Ino, R. Shimano, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70, 155101 (2004).
[Crossref]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81, 199–201 (2002).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975) 2nd Edition.

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Jin, Y.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Klein, M. W.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Kondo, T.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

Konishi, K.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express. 15, 9575–9583 (2007).
[Crossref] [PubMed]

Kumazawa, R.

N. Nagai, R. Kumazawa, and R. Fukuyama, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett. 413, 495–500 (2005).
[Crossref]

Kuwata-Gonokami, M.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express. 15, 9575–9583 (2007).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Y. Ino, R. Shimano, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70, 155101 (2004).
[Crossref]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81, 199–201 (2002).
[Crossref]

Larkin, J.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

Lee, M.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

Linden, S.

Linfield, E. H

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Ma, X. F.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Mittleman, D. M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Non-contact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[Crossref]

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett. 89, 211105 (2006).
[Crossref]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

Murakami, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

Nagai, N.

N. Nagai, R. Kumazawa, and R. Fukuyama, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett. 413, 495–500 (2005).
[Crossref]

Nagashima, T.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

Nuss, M. C.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Non-contact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

Ohtake, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

Orenstein, J.

B. Parks, S. Spielman, and J. Orenstein, “High-frequency Hall effect in the normal state of YBa2Cu3O7,” Phys. Rev. B 56, 115–117 (1997).
[Crossref]

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Papakostas, A.

A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Parks, B.

B. Parks, S. Spielman, and J. Orenstein, “High-frequency Hall effect in the normal state of YBa2Cu3O7,” Phys. Rev. B 56, 115–117 (1997).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[Crossref]

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

Planken, P. C. M.

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[Crossref]

Potts, A.

A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

Rice, A.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[Crossref]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Sarukura, N.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

Sasakawa, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

Schade, U.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[Crossref]

Schall, M.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of alltrans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Schubert, M.

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[Crossref]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Shimano, R.

Y. Ino, R. Shimano, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70, 155101 (2004).
[Crossref]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81, 199–201 (2002).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Spielman, S.

B. Parks, S. Spielman, and J. Orenstein, “High-frequency Hall effect in the normal state of YBa2Cu3O7,” Phys. Rev. B 56, 115–117 (1997).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[Crossref]

Sugimoto, T.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express. 15, 9575–9583 (2007).
[Crossref] [PubMed]

Svirko, Y.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express. 15, 9575–9583 (2007).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Svirko, Yu. P.

Y. Ino, R. Shimano, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70, 155101 (2004).
[Crossref]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81, 199–201 (2002).
[Crossref]

Tamura, A.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Tominaga, K.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Uhd Jepsen, P.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of alltrans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

van der Marel, W. A. M.

van der Valk, N. C. J.

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

Walther, M.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of alltrans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Wegener, M.

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

Wu, Q.

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[Crossref]

Yamamoto, K.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

YEH, P.

P. YEH, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[Crossref]

Zhang, X.-C.

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[Crossref]

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

Zheludev, N. I.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, “Non-contact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[Crossref]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81, 199–201 (2002).
[Crossref]

F. Miyamaru and M. Hangyo, “Strong optical activity in chiral metamaterials of metal screw hole arrays,” Appl. Phys. Lett. 89, 211105 (2006).
[Crossref]

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[Crossref]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[Crossref]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113 (2007).
[Crossref]

Biophys. J (1)

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides,” Biophys. J, L22–L24 (2005).
[Crossref] [PubMed]

Chem. Phys. Lett. (2)

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of alltrans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

N. Nagai, R. Kumazawa, and R. Fukuyama, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett. 413, 495–500 (2005).
[Crossref]

J. Phys.: Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[Crossref]

Nature (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2003).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

P. YEH, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[Crossref]

Opt. Express. (2)

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express. 15, 1084–1095 (2007).
[Crossref] [PubMed]

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express. 15, 9575–9583 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (2)

Y. Ino, R. Shimano, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70, 155101 (2004).
[Crossref]

B. Parks, S. Spielman, and J. Orenstein, “High-frequency Hall effect in the normal state of YBa2Cu3O7,” Phys. Rev. B 56, 115–117 (1997).
[Crossref]

Phys. Rev. Lett. (3)

A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical Manifestations of Planar Chirality,” Phys. Rev. Lett. 90, 107404 (2003).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref] [PubMed]

Physics in Medicine and Biology (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology 47, 3853–3863 (2002).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, “Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation,” Rev. Sci. Instrum. 77, 063902 (2006).
[Crossref]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975) 2nd Edition.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a). Experimental scheme and achiral, right- and left-twisted gammadion grating structures. When the linearly polarized incident THz wave is transmitted through the sample, the transmitted wave is polarized elliptically. Definition of the elliptical polarization with the polarization azimuth rotation angle θ and ellipticity η, which are defined in this figure. (b) Schematic figure of sample structure. Cross section of left-twisted structure is shown. (c) The three measurement configurations of the THz polarimetry with three wire grid polarizers (WGP’s).

Fig. 2.
Fig. 2.

Time domain THz waveforms of transmitted waves obtained in the cross-Nichol arrangement (a), with WGP2 -45°(b) and +45°(c). The green curves show a reference signal measured without sample. The red, blue and black curves show the signal for right- and left-twisted gammadion samples and cross-patterned samples, respectively. By Fourier transform, the x- and y- elements of the electric field in frequency domain are calculated and shown in (d) and (e). Absolute value of electric fields is shown in Fig. (d)

Fig. 3.
Fig. 3.

Absolute values of diagonal (a) and off-diagonal (b) elements of the Jones matrix of the sample. Spectra of rotation angle (c) and ellipticity (d). Effective complex dielectric tensor of the sample for left (blue) and right-twisted (red) gammadion samples and cross-patterned sample (black). Green curves show the results of the Si substrate. ((e)–(h))

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ˜ sam = T ˜ E ˜ ref
[ t ˜ 1 t ˜ 2 ] = [ E ˜ x ref E ˜ y ref E ˜ y ref E ˜ x ref ] 1 [ E ˜ x sam E ˜ y sam ] .
θ = 1 2 arctan 2 Re ( t ˜ 1 t ˜ 2 * ) t ˜ 1 2 + t ˜ 2 2
η = 1 2 arcsin 2 Im ( t ˜ 1 t ˜ 2 * ) t ˜ 1 2 + t ˜ 2 2
t ˜ 1 = 2 1 + n ˜ 2 n ˜ 1 + n ˜ exp ( i ω ( n ˜ 1 ) L c ) ,
δ ˜ ε 0 = t ˜ 2 t ˜ 1 [ 1 2 1 n ˜ ( 1 + n ˜ ) + 1 2 1 n ˜ 2 ( 1 + n ˜ ) + 1 2 i ω L c n ˜ ] 1

Metrics