Abstract

In this work, we demonstrate via computer simulation the single mode and zero birefringence conditions for photonic wires with height and width less than 600 nm. We report on the simulation conditions for both single mode and zero birefringence in silicon-on-insulator photonic wires and sub-micron rib waveguides using a 3-dimensional imaginary beam propagation method. The results show that operation in both single mode and zero birefringence is possible under certain circumstances and that the conditions are restricted by fabrication processes where birefringence is strongly dependent upon waveguide dimensions. A matrix of waveguide parameters has been identified at both operating wavelengths of 1310 nm and 1550 nm, which can satisfy single mode and zero birefringence conditions simultaneously. This is to provide a general design rule for waveguides in small dimensions on the order of hundreds of nanometres.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, "Single Mode and Polarisation Independent Silicon-on-Insulator Waveguides with Small Cross Section," IEEE J. Lightwave Tech. 23, 2103-2111 (2005).
    [CrossRef]
  2. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarisation independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5525 (2004).
    [CrossRef]
  3. F. Y. Gardes, G. T. Reed, N. Emerson, and C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Opt. Express 13, 8845-8854 (2005).
    [CrossRef] [PubMed]
  4. S. T. Lim, C. E. Png, S. P. Chan and G. T. Reed, "Flat spectral response silicon arrayed waveguide gratings via ion implantation," Opt. Express 14, 6469-6478 (2006).
    [CrossRef] [PubMed]
  5. C. E. Png, S. T. Lim, E. P. Li, and G. T. Reed, "Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities," IEEE Transaction Nanotech. 5, 478-484 (2006).
    [CrossRef]
  6. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
    [CrossRef]
  7. F. Gan and F. X. Kartner, "High-speed silicon electrooptics modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
    [CrossRef]
  8. K. Sasaki, F. Ohno, A. Motegi and T. Baba, "Arrayed waveguide grating of 70x60µm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
    [CrossRef]
  9. "Beamprop," Rsoft Design Group, Inc., Ossining. NY.
  10. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt Express 14, 3853-3863 (2005).
    [CrossRef]
  11. F. Grillot, L. Vivien, S. Laval and E. Cassan, "Propagation loss in single mode ultrasmall square silicon-on-insulator optical waveguides," J. Lightwave Tech. 24, 891- 896 (2006).
    [CrossRef]
  12. W. Ye, D. X. Xu, S. Janz, P. Cheben, M.J. Picard, B. Lamontagne and N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," J. Lightwave Tech. 23, 1308-1318 (2005).
    [CrossRef]

2006 (3)

C. E. Png, S. T. Lim, E. P. Li, and G. T. Reed, "Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities," IEEE Transaction Nanotech. 5, 478-484 (2006).
[CrossRef]

F. Grillot, L. Vivien, S. Laval and E. Cassan, "Propagation loss in single mode ultrasmall square silicon-on-insulator optical waveguides," J. Lightwave Tech. 24, 891- 896 (2006).
[CrossRef]

S. T. Lim, C. E. Png, S. P. Chan and G. T. Reed, "Flat spectral response silicon arrayed waveguide gratings via ion implantation," Opt. Express 14, 6469-6478 (2006).
[CrossRef] [PubMed]

2005 (6)

W. Ye, D. X. Xu, S. Janz, P. Cheben, M.J. Picard, B. Lamontagne and N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," J. Lightwave Tech. 23, 1308-1318 (2005).
[CrossRef]

F. Y. Gardes, G. T. Reed, N. Emerson, and C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Opt. Express 13, 8845-8854 (2005).
[CrossRef] [PubMed]

F. Gan and F. X. Kartner, "High-speed silicon electrooptics modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi and T. Baba, "Arrayed waveguide grating of 70x60µm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
[CrossRef]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt Express 14, 3853-3863 (2005).
[CrossRef]

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, "Single Mode and Polarisation Independent Silicon-on-Insulator Waveguides with Small Cross Section," IEEE J. Lightwave Tech. 23, 2103-2111 (2005).
[CrossRef]

2004 (2)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarisation independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5525 (2004).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, "Polarisation independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5525 (2004).
[CrossRef]

Electron. Lett. (1)

K. Sasaki, F. Ohno, A. Motegi and T. Baba, "Arrayed waveguide grating of 70x60µm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
[CrossRef]

IEEE J. Lightwave Tech. (1)

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, "Single Mode and Polarisation Independent Silicon-on-Insulator Waveguides with Small Cross Section," IEEE J. Lightwave Tech. 23, 2103-2111 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

F. Gan and F. X. Kartner, "High-speed silicon electrooptics modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
[CrossRef]

IEEE Transaction Nanotech. (1)

C. E. Png, S. T. Lim, E. P. Li, and G. T. Reed, "Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities," IEEE Transaction Nanotech. 5, 478-484 (2006).
[CrossRef]

J. Lightwave Tech. (2)

F. Grillot, L. Vivien, S. Laval and E. Cassan, "Propagation loss in single mode ultrasmall square silicon-on-insulator optical waveguides," J. Lightwave Tech. 24, 891- 896 (2006).
[CrossRef]

W. Ye, D. X. Xu, S. Janz, P. Cheben, M.J. Picard, B. Lamontagne and N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," J. Lightwave Tech. 23, 1308-1318 (2005).
[CrossRef]

Opt Express (1)

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt Express 14, 3853-3863 (2005).
[CrossRef]

Opt. Express (2)

Other (1)

"Beamprop," Rsoft Design Group, Inc., Ossining. NY.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross sectional area of (a) photonic wire waveguides and (b) submicron rib structure, with width W, height H, and etch depth D.

Fig. 2.
Fig. 2.

Boundary lines for the single mode condition cutoff dimensions for a submicron rib waveguide at an operating wavelength of 1310 nm (a) H=300 nm and (b) H=400 nm. The shaded region indicates the single mode condition of both TE and TM polarizations.

Fig. 3.
Fig. 3.

Boundary lines for the single mode condition cutoff dimensions of a submicron rib waveguide at an operating wavelength of 1550 nm (a) H=300 nm and (b) H=400 nm. The shaded region indicates the single mode condition of both TE and TM polarizations.

Fig. 4.
Fig. 4.

Birefringent curves as a function of waveguide width. The effective index difference of the TE and TM fundamental modes at various D: (a) wavelength 1310 nm, H=300 nm, (b) wavelength 1310 nm, H=400 nm, (c) wavelength 1550 nm, H=300 nm, and (d) wavelength 1550 nm, H=400 nm.

Fig. 5.
Fig. 5.

Trend and boundary lines for single mode cutoff dimensions and ZBC as a function of waveguide dimensions for an operation wavelength of 1550 nm for H=400 nm. Two conditions are present at D=360 nm, W=277 nm and D=380 nm, W=318 nm.

Fig. 5.
Fig. 5.

Boundary lines for the single mode condition cutoff dimensions as a function of photonic wire dimensions for an operation wavelength of (a) 1330 nm and (b) 1550 nm. Circles represent experimental data from [68] and squares represent results from [10].

Fig. 6.
Fig. 6.

Effective-index difference between TE and TM polarized modes for different PW waveguide dimensions; (a) simulated results at 1310 nm and (b) simulated results at 1550 nm.

Fig. 7.
Fig. 7.

SMC boundaries and ZBC locus as a function of waveguides dimensions (a) wavelength at 1310 nm (b) wavelength at 1550 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ o = 1550 nm 0.2 + 162 e ( Height 0.03 ) Width 0.3 + 5.9 e ( Height 0.08 )

Metrics