Abstract

Abstract

We present a broadband nondispersive optical phase shifter array based on microelectromechanical systems (MEMS) technology. The device consists of an array of micro-grating elements. Each grating element utilizes an in-plane translational motion to produce a phase shift to the diffracted light beam. The phase shift is dependent only on the ratio of the grating displacement to its period, and thus independent of incident wavelength. The proposed operation principle was demonstrated with a prototype device developed using a silicon-on-insulator (SOI) micromachining process. This MEMS nondispersive phase-shifter array may be useful in many multispectral applications including broadband optical phased arrays.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
    [CrossRef]
  2. J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
    [CrossRef]
  3. G. M. Morris, "Diffraction theory for an achromatic Fourier transformation," Appl. Opt. 20, 2017 - 2025 (1981).
    [CrossRef] [PubMed]
  4. S. A. Serati and J. E. Stockley, "Advances in liquid crystal based devices for wavefront control and beamstreering," Proc. SPIE 5894, 180-192 (2005).
  5. J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, "Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals," Opt. Lett. 20, 2441-2443 (1995).
    [CrossRef] [PubMed]
  6. K. Wang and C. T. C. Ngyugen, "High-order medium frequency micromechanical electronic filters," J. Microelectromech. Syst. 8, 534-557 (1999).
    [CrossRef]
  7. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, "Deformable grating optical modulator," Opt. Lett. 17, 688-690 (1992).
    [CrossRef] [PubMed]
  8. M. K. Lee, W. D. Cowan, B. M. Welsh, V. M. Bright and M. C. Roggemann, "Aberration correction results from a segmented microelectromechanical deformable mirror and a refractive lenslet array," Opt. Lett. 23, 645-647 (1998).
    [CrossRef]
  9. K. B. Li, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, "Coherent micromirror arrays" Opt. Lett. 27, 366-368 (2002).
    [CrossRef]
  10. G. Zhou, V. J. Logeeswaran, F. S. Chau, and F. E. H. Tay, "Line-addressable digital-deflection programmable micromirror array," Opt. Lett. 29, 2581-2583 (2004).
    [CrossRef] [PubMed]
  11. G. Zhou and F. S. Chau, "Helical wave-front laser beam generated with a microelectromechanical systems (MEMS)-based device," IEEE Photon. Technol. Lett. 18, 292-294 (2006).
    [CrossRef]
  12. L. E. Drain, The Laser Doppler Technique (John Wiley & Sons, New York, 1980).
  13. K. Miller, A. Cowen, G. Hames, and B. Hardy, SOIMUMPs design handbook, http://www.memscap.com/mumps/documents/SOIMUMPs.dr.v4.pdf

2006

G. Zhou and F. S. Chau, "Helical wave-front laser beam generated with a microelectromechanical systems (MEMS)-based device," IEEE Photon. Technol. Lett. 18, 292-294 (2006).
[CrossRef]

2005

S. A. Serati and J. E. Stockley, "Advances in liquid crystal based devices for wavefront control and beamstreering," Proc. SPIE 5894, 180-192 (2005).

2004

2002

1999

K. Wang and C. T. C. Ngyugen, "High-order medium frequency micromechanical electronic filters," J. Microelectromech. Syst. 8, 534-557 (1999).
[CrossRef]

1998

1997

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

1996

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

1995

1992

1981

Bloom, D. M.

Bright, V. M.

Chau, F. S.

G. Zhou and F. S. Chau, "Helical wave-front laser beam generated with a microelectromechanical systems (MEMS)-based device," IEEE Photon. Technol. Lett. 18, 292-294 (2006).
[CrossRef]

G. Zhou, V. J. Logeeswaran, F. S. Chau, and F. E. H. Tay, "Line-addressable digital-deflection programmable micromirror array," Opt. Lett. 29, 2581-2583 (2004).
[CrossRef] [PubMed]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Cowan, W. D.

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Heritage, J. P.

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Johnson, K. M.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, "Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals," Opt. Lett. 20, 2441-2443 (1995).
[CrossRef] [PubMed]

Krishnamoorthy, U.

Lee, M. K.

Li, K. B.

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Logeeswaran, V. J.

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Morris, G. M.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Ngyugen, C. T. C.

K. Wang and C. T. C. Ngyugen, "High-order medium frequency micromechanical electronic filters," J. Microelectromech. Syst. 8, 534-557 (1999).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Roggemann, M. C.

Sandejas, F. S. A.

Serati, S. A.

S. A. Serati and J. E. Stockley, "Advances in liquid crystal based devices for wavefront control and beamstreering," Proc. SPIE 5894, 180-192 (2005).

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, "Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals," Opt. Lett. 20, 2441-2443 (1995).
[CrossRef] [PubMed]

Sharp, G. D.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, "Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals," Opt. Lett. 20, 2441-2443 (1995).
[CrossRef] [PubMed]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Solgaard, O.

Stockley, J. E.

S. A. Serati and J. E. Stockley, "Advances in liquid crystal based devices for wavefront control and beamstreering," Proc. SPIE 5894, 180-192 (2005).

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, "Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals," Opt. Lett. 20, 2441-2443 (1995).
[CrossRef] [PubMed]

Tay, F. E. H.

Walsh, K. F.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Wang, K.

K. Wang and C. T. C. Ngyugen, "High-order medium frequency micromechanical electronic filters," J. Microelectromech. Syst. 8, 534-557 (1999).
[CrossRef]

Wang, P.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Watson, W. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Welsh, B. M.

Zhou, G.

G. Zhou and F. S. Chau, "Helical wave-front laser beam generated with a microelectromechanical systems (MEMS)-based device," IEEE Photon. Technol. Lett. 18, 292-294 (2006).
[CrossRef]

G. Zhou, V. J. Logeeswaran, F. S. Chau, and F. E. H. Tay, "Line-addressable digital-deflection programmable micromirror array," Opt. Lett. 29, 2581-2583 (2004).
[CrossRef] [PubMed]

Appl. Opt.

IEEE Photon. Technol. Lett.

G. Zhou and F. S. Chau, "Helical wave-front laser beam generated with a microelectromechanical systems (MEMS)-based device," IEEE Photon. Technol. Lett. 18, 292-294 (2006).
[CrossRef]

J. Microelectromech. Syst.

K. Wang and C. T. C. Ngyugen, "High-order medium frequency micromechanical electronic filters," J. Microelectromech. Syst. 8, 534-557 (1999).
[CrossRef]

Opt. Lett.

Proc. IEEE

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and W. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Proc. SPIE

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, "Broadband beam steering," Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

S. A. Serati and J. E. Stockley, "Advances in liquid crystal based devices for wavefront control and beamstreering," Proc. SPIE 5894, 180-192 (2005).

Other

L. E. Drain, The Laser Doppler Technique (John Wiley & Sons, New York, 1980).

K. Miller, A. Cowen, G. Hames, and B. Hardy, SOIMUMPs design handbook, http://www.memscap.com/mumps/documents/SOIMUMPs.dr.v4.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of optical phase shifting array using (a) micromirrors (b) MEMS gratings

Fig. 2.
Fig. 2.

(a). MEMS grating array developed using SOI micromachining for nondispersive optical phase shifting (b) schematic of the experimental setup.

Fig. 3.
Fig. 3.

Far-field diffraction pattern as a function of grating displacement for 532 nm wavelength laser beam

Fig. 4.
Fig. 4.

Far-field diffraction pattern as a function of grating displacement for 632.8 nm wavelength laser beam

Fig. 5.
Fig. 5.

Proposed 1D broadband optical phased array using MEMS gratings

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f + 1 = f 0 + v Λ ,
E + 1 = A cos ( 2 π f + 1 t + ϕ 1 ) ,
E + 1 = A cos ( 2 π f 0 t + 2 π 0 t v ( τ ) Λ d τ + ϕ 1 ) = A cos ( 2 π f 0 t + 2 π d Λ + ϕ 1 ) ,
x = 0.065 × V x .

Metrics