Abstract

Abstract

Using first-principles calculations, we investigate the effect of tube size on optical properties of the zigzag, armchair, and chiral SiC nanotubes. The results indicate that the optical spectra of SiC nanotubes are dependent on the diameter and chirality, and that optical anisotropy is observed for different light polarizations. For a given chirality of SiCNTs, redshifts or blueshifts of the peaks in the dielectric function and energy loss function with increasing tube diameter are possible due to the competition between the size effect and π orbitals overlapping, and the shifts become smaller as the tube diameter increases. The unusual optical properties of semiconducting SiC nanotubes present an opportunity for applications in electro-optical devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Iijima, "Helical microtubules of graphitic carbon," Nature (London) 354, 56-58 (1991).
    [CrossRef]
  2. N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
    [CrossRef] [PubMed]
  3. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996).
    [CrossRef] [PubMed]
  4. D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999).
    [CrossRef]
  5. X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
    [CrossRef] [PubMed]
  6. M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005).
    [CrossRef]
  7. G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, "SiC nanotubes: A novel material for hydrogen storage," Nano Lett. 6, 1581-1583 (2006).
    [CrossRef] [PubMed]
  8. M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004).
    [CrossRef]
  9. R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa, "Ab initio study of native defects in SiC nanotubes," Phys. Rev. B 74, 155425 (2006).
    [CrossRef]
  10. A. Gali, "Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes," Phys. Rev. B 73, 245415 (2006).
    [CrossRef]
  11. M. W. Zhao, Y. Y. Xia, R. Q. Zhang, and S.-T. Lee, "Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation." J. Chem. Phys. 122, 214707 (2005).
    [CrossRef] [PubMed]
  12. F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
    [CrossRef]
  13. T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
    [CrossRef] [PubMed]
  14. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
    [CrossRef]
  15. N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004).
    [CrossRef]
  16. D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
    [CrossRef] [PubMed]
  17. V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
    [CrossRef]
  18. M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
    [CrossRef]
  19. T. H. Fischer and J. Almlof, "General-methods for geometry and wave-function optimization," J. Phys. Chem. 96, 9768 (1992).
    [CrossRef]
  20. D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
    [CrossRef]
  21. X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).
  22. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
    [CrossRef]
  23. J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B 47, 4174 (1993).
    [CrossRef]
  24. S. Saha, and T. P. Sinha, "Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3," Phys. Rev. B 62, 8828 (2000).
    [CrossRef]
  25. M. Q. Cai, Z. Yin, and M. S. Zhang, "First-principles study of optical properties of barium titanate," Appl. Phys. Lett. 83, 2805-2807 (2003).
    [CrossRef]
  26. J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004).
    [CrossRef]
  27. Y. Miyamoto and B. D. Yu, "Computational designing of graphitic silicon carbide and its tubular forms," Appl. Phys. Lett. 80, 586-588 (2002).
    [CrossRef]
  28. O. Madelung, Landolt-Börnstein, eds., Physics of Group IV Elements and III-V Compounds, (Springer, Berlin, 1982) New Series, Group III, Vol. 17a.
  29. V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006).
    [CrossRef]
  30. H. Pan, Y. P. Feng, and J. Y. Lin, "First-principles study of optical spectra of single-wall BC2N nanotubes," Phys. Rev. B 73, 035420 (2006).
    [CrossRef]
  31. W. Z. Liang, X. J. Wang, S. Yokojima, and G. Chen, "Electronic structures and optical properties of open and capped carbon nanotubes," J. Am. Chem. Soc. 122, 11129 (2000).
    [CrossRef]

2006 (6)

G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, "SiC nanotubes: A novel material for hydrogen storage," Nano Lett. 6, 1581-1583 (2006).
[CrossRef] [PubMed]

R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa, "Ab initio study of native defects in SiC nanotubes," Phys. Rev. B 74, 155425 (2006).
[CrossRef]

A. Gali, "Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes," Phys. Rev. B 73, 245415 (2006).
[CrossRef]

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006).
[CrossRef]

H. Pan, Y. P. Feng, and J. Y. Lin, "First-principles study of optical spectra of single-wall BC2N nanotubes," Phys. Rev. B 73, 035420 (2006).
[CrossRef]

2005 (5)

X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
[CrossRef] [PubMed]

M. W. Zhao, Y. Y. Xia, R. Q. Zhang, and S.-T. Lee, "Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation." J. Chem. Phys. 122, 214707 (2005).
[CrossRef] [PubMed]

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005).
[CrossRef]

2004 (3)

M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004).
[CrossRef]

N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004).
[CrossRef]

J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004).
[CrossRef]

2003 (1)

M. Q. Cai, Z. Yin, and M. S. Zhang, "First-principles study of optical properties of barium titanate," Appl. Phys. Lett. 83, 2805-2807 (2003).
[CrossRef]

2002 (3)

Y. Miyamoto and B. D. Yu, "Computational designing of graphitic silicon carbide and its tubular forms," Appl. Phys. Lett. 80, 586-588 (2002).
[CrossRef]

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

2000 (3)

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

S. Saha, and T. P. Sinha, "Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3," Phys. Rev. B 62, 8828 (2000).
[CrossRef]

W. Z. Liang, X. J. Wang, S. Yokojima, and G. Chen, "Electronic structures and optical properties of open and capped carbon nanotubes," J. Am. Chem. Soc. 122, 11129 (2000).
[CrossRef]

1999 (2)

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
[CrossRef]

D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999).
[CrossRef]

1996 (2)

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996).
[CrossRef] [PubMed]

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef]

1995 (1)

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

1993 (1)

J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B 47, 4174 (1993).
[CrossRef]

1992 (1)

T. H. Fischer and J. Almlof, "General-methods for geometry and wave-function optimization," J. Phys. Chem. 96, 9768 (1992).
[CrossRef]

1991 (1)

S. Iijima, "Helical microtubules of graphitic carbon," Nature (London) 354, 56-58 (1991).
[CrossRef]

1990 (1)

D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
[CrossRef]

Akhmatskaya, E. V.

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

Almlof, J.

T. H. Fischer and J. Almlof, "General-methods for geometry and wave-function optimization," J. Phys. Chem. 96, 9768 (1992).
[CrossRef]

Andriotis, A. N.

M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004).
[CrossRef]

Baierle, R. J.

R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa, "Ab initio study of native defects in SiC nanotubes," Phys. Rev. B 74, 155425 (2006).
[CrossRef]

Bando, Y.

D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999).
[CrossRef]

Boyarkina, O. V.

V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006).
[CrossRef]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef]

Cai, M. Q.

M. Q. Cai, Z. Yin, and M. S. Zhang, "First-principles study of optical properties of barium titanate," Appl. Phys. Lett. 83, 2805-2807 (2003).
[CrossRef]

Chen, G.

X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).

W. Z. Liang, X. J. Wang, S. Yokojima, and G. Chen, "Electronic structures and optical properties of open and capped carbon nanotubes," J. Am. Chem. Soc. 122, 11129 (2000).
[CrossRef]

Chen, P.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
[CrossRef]

Cherry, K.

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

Chopra, N. G.

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

Clark, S. J.

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

Cohen, M. L.

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

Crespi, V. H.

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

Demoncy, N.

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996).
[CrossRef] [PubMed]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef]

Feng, Y. P.

H. Pan, Y. P. Feng, and J. Y. Lin, "First-principles study of optical spectra of single-wall BC2N nanotubes," Phys. Rev. B 73, 035420 (2006).
[CrossRef]

Fischer, T. H.

T. H. Fischer and J. Almlof, "General-methods for geometry and wave-function optimization," J. Phys. Chem. 96, 9768 (1992).
[CrossRef]

Fomina, L. V.

V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006).
[CrossRef]

Froudakis, G.

M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004).
[CrossRef]

Froudakis, G. E.

G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, "SiC nanotubes: A novel material for hydrogen storage," Nano Lett. 6, 1581-1583 (2006).
[CrossRef] [PubMed]

Gaiduk, E. A.

V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006).
[CrossRef]

Gali, A.

A. Gali, "Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes," Phys. Rev. B 73, 245415 (2006).
[CrossRef]

Goldberg, D.

D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999).
[CrossRef]

Han, W.

D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999).
[CrossRef]

Hasnip, P. J.

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

He, J. L.

J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004).
[CrossRef]

He, T.

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

Heine, V.

J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B 47, 4174 (1993).
[CrossRef]

Hindman, E.

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
[CrossRef] [PubMed]

Huang, B. D.

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

Hug, G.

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996).
[CrossRef] [PubMed]

Iijima, S.

S. Iijima, "Helical microtubules of graphitic carbon," Nature (London) 354, 56-58 (1991).
[CrossRef]

Ji, W.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
[CrossRef]

Ji, Y. J.

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

Johnson, A. T.

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
[CrossRef] [PubMed]

Kikkawa, J. M.

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
[CrossRef] [PubMed]

Kouklin, N.

N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004).
[CrossRef]

Kurashima, K.

D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999).
[CrossRef]

Lee, C. S.

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

Lee, S. T.

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

Lee, S.-T.

M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005).
[CrossRef]

M. W. Zhao, Y. Y. Xia, R. Q. Zhang, and S.-T. Lee, "Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation." J. Chem. Phys. 122, 214707 (2005).
[CrossRef] [PubMed]

Li, C. P.

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

Li, F.

M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005).
[CrossRef]

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

Li, W. F.

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

Liang, W. Z.

W. Z. Liang, X. J. Wang, S. Yokojima, and G. Chen, "Electronic structures and optical properties of open and capped carbon nanotubes," J. Am. Chem. Soc. 122, 11129 (2000).
[CrossRef]

Lin, J.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
[CrossRef]

Lin, J. S.

J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B 47, 4174 (1993).
[CrossRef]

Lin, J. Y.

H. Pan, Y. P. Feng, and J. Y. Lin, "First-principles study of optical spectra of single-wall BC2N nanotubes," Phys. Rev. B 73, 035420 (2006).
[CrossRef]

Lin, X. H.

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

Lindan, P. L. D.

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

Lithoxoos, G. P.

G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, "SiC nanotubes: A novel material for hydrogen storage," Nano Lett. 6, 1581-1583 (2006).
[CrossRef] [PubMed]

Liu, W.

X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).

Liu, X. D.

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

Loiseau, A.

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996).
[CrossRef] [PubMed]

Louie, S. G.

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

Luyken, R. J.

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

Margulis, V. A.

V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006).
[CrossRef]

Mavrandonakis, A.

M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004).
[CrossRef]

Mei, L. M.

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

Meng, X.

X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).

Menon, M.

M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004).
[CrossRef]

Milkie, D. E.

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
[CrossRef] [PubMed]

Milman, V.

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

Ming, N. B.

J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004).
[CrossRef]

Miwa, R. H.

R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa, "Ab initio study of native defects in SiC nanotubes," Phys. Rev. B 74, 155425 (2006).
[CrossRef]

Miyamoto, Y.

Y. Miyamoto and B. D. Yu, "Computational designing of graphitic silicon carbide and its tubular forms," Appl. Phys. Lett. 80, 586-588 (2002).
[CrossRef]

Mpourmpakis, G.

G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, "SiC nanotubes: A novel material for hydrogen storage," Nano Lett. 6, 1581-1583 (2006).
[CrossRef] [PubMed]

Muryumin, E. E.

V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006).
[CrossRef]

Neves, L. P.

R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa, "Ab initio study of native defects in SiC nanotubes," Phys. Rev. B 74, 155425 (2006).
[CrossRef]

Nobes, R. H.

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

Pan, H.

H. Pan, Y. P. Feng, and J. Y. Lin, "First-principles study of optical spectra of single-wall BC2N nanotubes," Phys. Rev. B 73, 035420 (2006).
[CrossRef]

Pascard, H.

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996).
[CrossRef] [PubMed]

Paulson, S.

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
[CrossRef] [PubMed]

Payne, M. C.

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B 47, 4174 (1993).
[CrossRef]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef]

Pickard, C. J.

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

Piquini, P.

R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa, "Ab initio study of native defects in SiC nanotubes," Phys. Rev. B 74, 155425 (2006).
[CrossRef]

Probert, M. J.

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

Qteish, A.

J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B 47, 4174 (1993).
[CrossRef]

Richter, E.

M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004).
[CrossRef]

Saha, S.

S. Saha, and T. P. Sinha, "Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3," Phys. Rev. B 62, 8828 (2000).
[CrossRef]

Samios, J.

G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, "SiC nanotubes: A novel material for hydrogen storage," Nano Lett. 6, 1581-1583 (2006).
[CrossRef] [PubMed]

Sato, T.

D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999).
[CrossRef]

Segall, M. D.

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

Sinha, T. P.

S. Saha, and T. P. Sinha, "Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3," Phys. Rev. B 62, 8828 (2000).
[CrossRef]

Song, C.

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

Staii, C.

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
[CrossRef] [PubMed]

Straus, D.

N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004).
[CrossRef]

Sun, J.

J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004).
[CrossRef]

Sun, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
[CrossRef]

Sun, X. H.

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

Sun, Y.

X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).

Tan, K. L.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
[CrossRef]

Teo, B. T.

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

Tian, Y. J.

J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004).
[CrossRef]

Tzolov, M.

N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004).
[CrossRef]

Vanderbilt, D.

D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
[CrossRef]

Wang, C. Z.

X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).

Wang, H. T.

J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004).
[CrossRef]

Wang, X. J.

W. Z. Liang, X. J. Wang, S. Yokojima, and G. Chen, "Electronic structures and optical properties of open and capped carbon nanotubes," J. Am. Chem. Soc. 122, 11129 (2000).
[CrossRef]

White, J. A.

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

Willaime, F.

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996).
[CrossRef] [PubMed]

Winkler, B.

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

Wong, N. B.

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

Wong, W. K.

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

Wu, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
[CrossRef]

Xia, Y.

M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005).
[CrossRef]

Xia, Y. Y.

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

M. W. Zhao, Y. Y. Xia, R. Q. Zhang, and S.-T. Lee, "Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation." J. Chem. Phys. 122, 214707 (2005).
[CrossRef] [PubMed]

Xu, J. M.

N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004).
[CrossRef]

Xu, X. G.

X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).

Yang, Z. H.

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

Yin, A.

N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004).
[CrossRef]

Yin, Z.

M. Q. Cai, Z. Yin, and M. S. Zhang, "First-principles study of optical properties of barium titanate," Appl. Phys. Lett. 83, 2805-2807 (2003).
[CrossRef]

Yokojima, S.

W. Z. Liang, X. J. Wang, S. Yokojima, and G. Chen, "Electronic structures and optical properties of open and capped carbon nanotubes," J. Am. Chem. Soc. 122, 11129 (2000).
[CrossRef]

Yu, B. D.

Y. Miyamoto and B. D. Yu, "Computational designing of graphitic silicon carbide and its tubular forms," Appl. Phys. Lett. 80, 586-588 (2002).
[CrossRef]

Zettl, A.

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

Zhang, M. S.

M. Q. Cai, Z. Yin, and M. S. Zhang, "First-principles study of optical properties of barium titanate," Appl. Phys. Lett. 83, 2805-2807 (2003).
[CrossRef]

Zhang, R. Q.

M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005).
[CrossRef]

M. W. Zhao, Y. Y. Xia, R. Q. Zhang, and S.-T. Lee, "Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation." J. Chem. Phys. 122, 214707 (2005).
[CrossRef] [PubMed]

Zhao, M.

M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005).
[CrossRef]

Zhao, M. W.

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

M. W. Zhao, Y. Y. Xia, R. Q. Zhang, and S.-T. Lee, "Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation." J. Chem. Phys. 122, 214707 (2005).
[CrossRef] [PubMed]

Acta Phys. Sin. (1)

X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).

Appl. Phys. Lett. (4)

M. Q. Cai, Z. Yin, and M. S. Zhang, "First-principles study of optical properties of barium titanate," Appl. Phys. Lett. 83, 2805-2807 (2003).
[CrossRef]

J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004).
[CrossRef]

Y. Miyamoto and B. D. Yu, "Computational designing of graphitic silicon carbide and its tubular forms," Appl. Phys. Lett. 80, 586-588 (2002).
[CrossRef]

N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999).
[CrossRef]

Int. J. Quantum Chem. (1)

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000).
[CrossRef]

J. Am. Chem. Soc. (2)

X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002).
[CrossRef] [PubMed]

W. Z. Liang, X. J. Wang, S. Yokojima, and G. Chen, "Electronic structures and optical properties of open and capped carbon nanotubes," J. Am. Chem. Soc. 122, 11129 (2000).
[CrossRef]

J. Appl. Phys. (1)

F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005).
[CrossRef]

J. Chem. Phys. (2)

T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006).
[CrossRef] [PubMed]

M. W. Zhao, Y. Y. Xia, R. Q. Zhang, and S.-T. Lee, "Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation." J. Chem. Phys. 122, 214707 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

T. H. Fischer and J. Almlof, "General-methods for geometry and wave-function optimization," J. Phys. Chem. 96, 9768 (1992).
[CrossRef]

J. Phys.: Condens. Matt. (1)

M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002).
[CrossRef]

Nano Lett. (2)

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005).
[CrossRef] [PubMed]

G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, "SiC nanotubes: A novel material for hydrogen storage," Nano Lett. 6, 1581-1583 (2006).
[CrossRef] [PubMed]

Nature (London) (1)

S. Iijima, "Helical microtubules of graphitic carbon," Nature (London) 354, 56-58 (1991).
[CrossRef]

Phys. Rev. B (9)

M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005).
[CrossRef]

M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004).
[CrossRef]

R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa, "Ab initio study of native defects in SiC nanotubes," Phys. Rev. B 74, 155425 (2006).
[CrossRef]

A. Gali, "Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes," Phys. Rev. B 73, 245415 (2006).
[CrossRef]

D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
[CrossRef]

J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B 47, 4174 (1993).
[CrossRef]

S. Saha, and T. P. Sinha, "Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3," Phys. Rev. B 62, 8828 (2000).
[CrossRef]

V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006).
[CrossRef]

H. Pan, Y. P. Feng, and J. Y. Lin, "First-principles study of optical spectra of single-wall BC2N nanotubes," Phys. Rev. B 73, 035420 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef]

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996).
[CrossRef] [PubMed]

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999).
[CrossRef]

Science (1)

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995).
[CrossRef] [PubMed]

Other (1)

O. Madelung, Landolt-Börnstein, eds., Physics of Group IV Elements and III-V Compounds, (Springer, Berlin, 1982) New Series, Group III, Vol. 17a.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optimized cells of (a) (12,0), (b) (6,6) and (c) (6,3) SiCNTs. Gray and yellow balls represent carbon and silicon atoms, respectively.

Fig. 2.
Fig. 2.

The orbitals localized at G (0, 0, 0) point of (a) the top most valence band (HOMO) and (b) the lowest conduction band (LUMO) of (12, 0), (6, 6), and (6,3) tubes (The absolute values of the isosurfaces of the wavefunctions are 0.03.). The variations of the energies of the top of HOVB and the bottom of LUCB as a function of n for (c) zigzag and (d) armchair SiCNTs.

Fig. 3.
Fig. 3.

The band structures and density of states for the zigzag (12, 0), the armchair (6, 6) and the chiral (6, 3) tubes.

Fig. 4.
Fig. 4.

(a). The imaginary part of dielectric function, and (b) the loss function under different polarizations for chiral (6, 3) tube. The inset is the dispersion of the loss function at 0 ~11 eV.

Fig. 5.
Fig. 5.

The imaginary parts of the dielectric functions under parallel polarization: (a) armchair SiCNTs and (b) zigzag SiCNTs.

Fig.6. .
Fig.6. .

The loss function. (a) Parallell polarization for armchair SiCNTs, (b) Perpendicular polarization for armchair SiCNTs, (c) Parallell polarization for zigzag SiCNTs, (d) perpendicular polarization for zigzag SiCNTs.

Tables (1)

Tables Icon

Table 1. Band gaps and static dielectric functions for SiCNTs. The d and ind in parentheses denote direct and indirect band gap semiconductors, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε 2 ij ( ω ) = 8 π 2 2 e 2 m 2 V eff k cv ( f c f v ) p cv i ( k ) p vc j ( k ) E vc 2 δ [ E cv ( k ) ω ]
L ( ω ) = Im ( 1 ε ( ω ) )

Metrics