Abstract

Abstract

We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~160 nm with an insertion loss of ~2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~120 nm FWHM and ~4.18 dB insertion loss at the peak.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  3. M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. McKee, "D-fibre filter for erbium gain spectrum flattening," Electron. Lett. 28, 131-132 (1991).
    [CrossRef]
  4. V. Bhatia, "Applications of long-period gratings to single and multi-parameter sensing," Opt. Express 4, 457-466 (1999).
    [CrossRef] [PubMed]
  5. S. Choi, T. J. Eom, B. H. Lee, J. W. Lee, and K. Oh, "Broadband tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair," IEEE Photon. Technol. Lett. 17, 115-117 (2004).
    [CrossRef]
  6. S. Ramachandran, Z. Wang, and M. E. Yan, "Bandwidth control of long-period grating-based mode converters in few-mode fibers," Opt. Lett. 27, 698-700 (2002).
    [CrossRef]
  7. X. Shu, L. Zhang, and I. Bennion, "Sensitivity characteristics of long-period fiber gratings," J. Lightwave Technol. 20, 255-266 (2002).
    [CrossRef]
  8. X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Dual-peak long-period fiber gratings with enhanced refractive index sensitivity by finely tailored mode dispersion that uses the light cladding etching technique," Appl. Opt. 46, 451-455 (2007).
    [CrossRef] [PubMed]
  9. Y. Zhu, P. Shum, H.-W. Bay, X. Chen. C.-H. Tan, and C. Lu, "Wide-passband, temperature-insensitive, and compact ?-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber," Opt. Lett. 29, 2608-2610 (2004).
    [CrossRef] [PubMed]
  10. J. Lauzon and A. Chandonnet, C. Xu, and Wei-Ping Huang, "Grating-assisted fused fiber filter," in Proceedings of 11th Int. Conf. Integrated Optics and Optical Fiber Communications and 23rd European Conf. Optical Communications, part 3, 169-172 (1997).
  11. P. K. Lam, A. J. Stevenson, and J. D. Love, "Bandpass spectra of evanescent couplers with long period gratings," Electron. Lett. 36, 967-969 (2000).
    [CrossRef]
  12. V. Grubsky, D. S. Starodubov, and J. Feinberg, "Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings," in Conference on Optical Fiber Communication (Optical Society of America, 2000) 4, paper FB5-1, pp. 28-30.
  13. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, "Analysis of two parallel long-period fiber gratings," J. Lightwave Technol. 22, 1358-1366 (2004).
    [CrossRef]
  14. M. J. Kim, F. Y. M. Chan, U. C. Paek, and B. H. Lee, "Tunable Add/Drop Filter for CWDM System Using Cladding Mode Coupling Assisted by Long-Period Fiber Gratings," in Conference on Optical Fiber Communication, Technical Digest (CD) (Optical Society of America, 2006), paper OTuM6.
  15. B. H. Lee and J. Nishii, "Dependence of fringe spacing on the grating separation in a long-period fiber grating pair," Appl. Opt. 38, 3450-3459 (1999).
    [CrossRef]
  16. D. Gloge, "Weakly Guiding Fibers," Appl. Opt. 10, 2252-2258 (1971).
    [CrossRef] [PubMed]
  17. F. Y. M. Chan, M. J. Kim, B. H. Lee, "Add/Drop filter for CWDM systems using side-coupled long-period fiber gratings," J. Opt. Soc. Korea 9, 135-139 (2005).
    [CrossRef]
  18. J. M. Schmitt, "Optical Coherence Tomography (OCT): A Review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  19. S. Y. Ryu, J. Na, H. Y. Choi, W. J. Choi, G. H. Yang, and B. H. Lee, "Realization of Fiber-based OCT System with Broadband Photonic Crystal Fiber Coupler," Proc. SPIE 6079, 60791N 1-7 (2006).

2007 (1)

2005 (1)

2004 (3)

2002 (2)

2000 (1)

P. K. Lam, A. J. Stevenson, and J. D. Love, "Bandpass spectra of evanescent couplers with long period gratings," Electron. Lett. 36, 967-969 (2000).
[CrossRef]

1999 (3)

1997 (1)

T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

1991 (1)

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. McKee, "D-fibre filter for erbium gain spectrum flattening," Electron. Lett. 28, 131-132 (1991).
[CrossRef]

1971 (1)

Bay, H.-W.

Bebbington, A.

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. McKee, "D-fibre filter for erbium gain spectrum flattening," Electron. Lett. 28, 131-132 (1991).
[CrossRef]

Bennion, I.

Bhatia, V.

V. Bhatia, "Applications of long-period gratings to single and multi-parameter sensing," Opt. Express 4, 457-466 (1999).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Cassidy, S. A.

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. McKee, "D-fibre filter for erbium gain spectrum flattening," Electron. Lett. 28, 131-132 (1991).
[CrossRef]

Chan, F. Y. M.

Chen, X.

Chiang, K. S.

Choi, S.

S. Choi, T. J. Eom, B. H. Lee, J. W. Lee, and K. Oh, "Broadband tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair," IEEE Photon. Technol. Lett. 17, 115-117 (2004).
[CrossRef]

Eom, T. J.

S. Choi, T. J. Eom, B. H. Lee, J. W. Lee, and K. Oh, "Broadband tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair," IEEE Photon. Technol. Lett. 17, 115-117 (2004).
[CrossRef]

Erdogan, T.

T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Gloge, D.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kim, M. J.

Lam, P. K.

P. K. Lam, A. J. Stevenson, and J. D. Love, "Bandpass spectra of evanescent couplers with long period gratings," Electron. Lett. 36, 967-969 (2000).
[CrossRef]

Lee, B. H.

Lee, J. W.

S. Choi, T. J. Eom, B. H. Lee, J. W. Lee, and K. Oh, "Broadband tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair," IEEE Photon. Technol. Lett. 17, 115-117 (2004).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Love, J. D.

P. K. Lam, A. J. Stevenson, and J. D. Love, "Bandpass spectra of evanescent couplers with long period gratings," Electron. Lett. 36, 967-969 (2000).
[CrossRef]

McKee, P.

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. McKee, "D-fibre filter for erbium gain spectrum flattening," Electron. Lett. 28, 131-132 (1991).
[CrossRef]

Ng, M. N.

Nishii, J.

Oh, K.

S. Choi, T. J. Eom, B. H. Lee, J. W. Lee, and K. Oh, "Broadband tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair," IEEE Photon. Technol. Lett. 17, 115-117 (2004).
[CrossRef]

Ramachandran, S.

Schmitt, J. M.

J. M. Schmitt, "Optical Coherence Tomography (OCT): A Review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

Shu, X.

Shum, P.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Stevenson, A. J.

P. K. Lam, A. J. Stevenson, and J. D. Love, "Bandpass spectra of evanescent couplers with long period gratings," Electron. Lett. 36, 967-969 (2000).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Wang, Z.

Wilkinson, M.

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. McKee, "D-fibre filter for erbium gain spectrum flattening," Electron. Lett. 28, 131-132 (1991).
[CrossRef]

Yan, M. E.

Zhang, L.

Zhou, K.

Zhu, Y.

Appl. Opt. (3)

Electron. Lett. (2)

P. K. Lam, A. J. Stevenson, and J. D. Love, "Bandpass spectra of evanescent couplers with long period gratings," Electron. Lett. 36, 967-969 (2000).
[CrossRef]

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. McKee, "D-fibre filter for erbium gain spectrum flattening," Electron. Lett. 28, 131-132 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, "Optical Coherence Tomography (OCT): A Review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

J. Lightwave Technol. (4)

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, "Analysis of two parallel long-period fiber gratings," J. Lightwave Technol. 22, 1358-1366 (2004).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

X. Shu, L. Zhang, and I. Bennion, "Sensitivity characteristics of long-period fiber gratings," J. Lightwave Technol. 20, 255-266 (2002).
[CrossRef]

J. Opt. Soc. Korea (1)

Opt. Express (1)

Opt. Lett. (2)

Photon. Technol. Lett. (1)

S. Choi, T. J. Eom, B. H. Lee, J. W. Lee, and K. Oh, "Broadband tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair," IEEE Photon. Technol. Lett. 17, 115-117 (2004).
[CrossRef]

Other (4)

J. Lauzon and A. Chandonnet, C. Xu, and Wei-Ping Huang, "Grating-assisted fused fiber filter," in Proceedings of 11th Int. Conf. Integrated Optics and Optical Fiber Communications and 23rd European Conf. Optical Communications, part 3, 169-172 (1997).

S. Y. Ryu, J. Na, H. Y. Choi, W. J. Choi, G. H. Yang, and B. H. Lee, "Realization of Fiber-based OCT System with Broadband Photonic Crystal Fiber Coupler," Proc. SPIE 6079, 60791N 1-7 (2006).

M. J. Kim, F. Y. M. Chan, U. C. Paek, and B. H. Lee, "Tunable Add/Drop Filter for CWDM System Using Cladding Mode Coupling Assisted by Long-Period Fiber Gratings," in Conference on Optical Fiber Communication, Technical Digest (CD) (Optical Society of America, 2006), paper OTuM6.

V. Grubsky, D. S. Starodubov, and J. Feinberg, "Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings," in Conference on Optical Fiber Communication (Optical Society of America, 2000) 4, paper FB5-1, pp. 28-30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The refractive index profile of the fiber fabricated for the experiment. The average index of the fiber core is lower than that of a conventional single mode fiber.

Fig. 2.
Fig. 2.

The LPG-assisted mode coupling in a fiber having a high core index (a) and a low core index (b). The cladding parts are assumed the same each other. For the same effective index difference, in the lower core index case, the activated cladding mode has a higher mode order.

Fig. 3.
Fig. 3.

(a). Transmission spectra of the LPGs measured before and after the turn-around point (TAP), and (b). the near-field image of the activated cladding mode taken with an infrared camera and a tunable laser source. It shows that the activated mode is the LP08 cladding mode.

Fig. 4.
Fig. 4.

Schematic of the proposed LPG-assisted band-pass filter. The core mode beam of a fiber is coupled to one of its cladding modes by an LPG (top fiber). Through the evanescent field coupling, the cladding mode is coupled to the cladding mode of the other fiber (bottom fiber). Finally, the output coupling is made to the core mode by the second LPG separated by L.

Fig. 5.
Fig. 5.

(a). The spectrum of the proposed bandpass filter measured with respect to the offset distance L, and (b) the detail spectrum for the case of an 80 mm offset distance. The 3 dB bandwidth is as wide as 160 nm, and the minimum insertion loss is ~2 dB.

Fig. 6.
Fig. 6.

The insertion loss of the proposed filter measured with respect to the offset distance between two LPGs. The red line is a fitting curve, which is in a sinusoidal pattern.

Fig. 7.
Fig. 7.

The evolution of the transmission spectrum of an LPG under strain.

Fig. 8.
Fig. 8.

Transmission spectrum of the proposed bandpass filter. By controlling the strain on fibers, the spectral shape could be tailored into a Gaussian-like one.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ res = Δ n eff Λ ,
Δ λ λ res 2 d Δ m .
Δ m Δ n eff λ d Δ n eff d λ .

Metrics