Abstract

Abstract

The performance of fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) has been improved by elimination of the technical constraints that limited its first demonstration. Doppler-broadened detection of C2H2 and CO2 at ~1531 nm is demonstrated using a cavity with a finesse of 4800. Frequency and wavelength modulated detection at absorption and dispersion phase are compared and the optimum mode of detection is discussed. A minimum detectable absorption of 8×10-11 cm-1, which corresponds to a detection limit of 4.5 ppt (2 ppt·m) for C2H2, was obtained for an acquisition time of 0.7 s by lineshape fitting. The linearity of the pressure dependence of the signal strengths is investigated for both C2H2 and CO2.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
    [CrossRef]
  2. C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 mm tunable diode laser," Jpn. J. Appl. Phys., Part 1  38, 920-922 (1999).
    [CrossRef]
  3. L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," J. Opt. Soc. Am. B 16, 2247-2254 (1999).
    [CrossRef]
  4. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
    [CrossRef]
  5. N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
    [CrossRef]
  6. J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
    [CrossRef] [PubMed]
  7. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range," J. Opt. Soc. Am. B 24, 1392-1405 (2007).
    [CrossRef]
  8. R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
    [CrossRef]
  9. P. C. D. Hobbs, Building Electro-Optical Systems (John Wiley & Sons, Inc., 2000).
    [CrossRef]
  10. HITRAN'2004 Database (Version 12.0)
  11. J. Ye, Ultrasensitive High Resolution Laser Spectroscopy and its Application to Optical Frequency Standards (PhD thesis, University of Colorado, 1997).
  12. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, Department of Physics, Umeå University, 90 187 Umeå, Sweden, are preparing a manuscript to be called "Optically saturated Doppler-broadened NICE-OHMS."

2007

2006

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

2004

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

1999

1984

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
[CrossRef]

Axner, O.

Bood, J.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
[CrossRef]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
[CrossRef]

Dube, P.

Foltynowicz, A.

Fox, R. W.

Gianfrani, L.

Hall, J. L.

Hollberg, L.

Ishibashi, C.

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 mm tunable diode laser," Jpn. J. Appl. Phys., Part 1  38, 920-922 (1999).
[CrossRef]

Ma, L. S.

Ma, W.

McIlroy, A.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Myers, T. L.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Osborn, D. L.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Sasada, H.

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 mm tunable diode laser," Jpn. J. Appl. Phys., Part 1  38, 920-922 (1999).
[CrossRef]

Schmidt, F. M.

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

van Leeuwen, N. J.

Williams, R. M.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Wilson, A. C.

Ye, J.

J. Chem. Phys.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 mm tunable diode laser," Jpn. J. Appl. Phys., Part 1  38, 920-922 (1999).
[CrossRef]

Phys. Rev. A: At. Mol. Opt. Phys.

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
[CrossRef]

Spectrochim. Acta, Part A

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Other

P. C. D. Hobbs, Building Electro-Optical Systems (John Wiley & Sons, Inc., 2000).
[CrossRef]

HITRAN'2004 Database (Version 12.0)

J. Ye, Ultrasensitive High Resolution Laser Spectroscopy and its Application to Optical Frequency Standards (PhD thesis, University of Colorado, 1997).

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, Department of Physics, Umeå University, 90 187 Umeå, Sweden, are preparing a manuscript to be called "Optically saturated Doppler-broadened NICE-OHMS."

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A detailed schematic of the experimental setup. ‘EDFL’ denotes the erbium doped fiber laser, ‘OI’ an optical isolator and ‘DBM’ a double balanced mixer. ‘PBS’ represents a polarizing beam splitter, ‘PD’ a photodetector, and ‘Phase’ a phase shifter, whereas ‘Gain’ is a separate gain stage. The nodes (∙) stand for power splitters (or power combiners, depending on the direction of the arrows). The dotted lines indicate the free-space laser beam path.

Fig. 2.
Fig. 2.

(a). Doppler-broadened fm-NICE-OHMS dispersion signal from 13 ppb (10 µTorr) of C2H2 (solid markers), a fitted lineshape (curve), and the residual to the fit (separate window). (b) wm-NICE-OHMS dispersion signal from 13 ppb (10 µTorr) of C2H2 (solid markers), a fitted lineshape (curve), and the residual to the fit (separate window).

Fig. 3.
Fig. 3.

(a). Signal strengths, Sfm-no0, of absorption (open markers) and dispersion (solid markers) fm-NICE-OHMS signals from C2H2 as a function of relative absorption. The solid line shows a linear fit to the dispersion phase data. A relative absorption of 10-6 cm-1 corresponds to ~45 µTorr of acetylene. (b) Signal strengths, Sfm-no0, of absorption (open markers) and dispersion (solid markers) fm-NICE-OHMS signals from CO2 as a function of relative absorption and their linear fits (solid lines). Here, a relative absorption of 2×10-7 cm-1 corresponds to ~800 mTorr of carbon dioxide.

Fig. 4.
Fig. 4.

(a). Doppler-broadened fm-NICE-OHMS dispersion signal from 30 mTorr (40 ppm) of CO2 (solid curve) together with the corresponding empty cavity scan (open markers). (b) Background corrected analytical signal (solid markers), a fitted lineshape (curve) and the residual to the fit (in the separate window).

Tables (1)

Tables Icon

Table 1. Limits of detection (LODs) for absorption (abs) and dispersion (disp) fm-NICE-OHMS signals achieved for different combinations of acquisition time and electronic detection bandwidth.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S fm no = S 0 fm no { [ χ ̅ G abs ( v c v m ) χ ̅ G abs ( v c + v m ) ] cos θ fm
+ [ χ ̅ G disp ( v c v m ) 2 χ ̅ G disp ( v c ) + χ ̅ G disp ( v c + v m ) ] sin θ fm } ,
S 1 wm no = S 0 wm no { [ χ ̅ G , 1 abs , even ( v c v m , v a ) χ ̅ G , 1 abs , even ( v c + v m , v a ) ] cos θ fm
+ [ χ ̅ G , 1 disp , even ( v c v m , v a ) 2 χ G , 1 disp , even ( v c , v a ) + χ G , 1 disp , even ( v c + v m , v a ) ] sin θ fm } ,
( c rel ) LOD no = 3 σ ξ no ,

Metrics